本站提供最佳vcp指标公式源码服务,欢迎转载和分享。

【区块链OEO源码】【eclipse导入源码视频】【unity lerp函数源码】unity官方源码_unity 源码

2025-01-09 06:07:13 来源:etcd源码多少行 分类:百科

1.unity urp源码学习一(渲染流程)
2.Unity开源项目精选AssetStudio:提取Unity游戏的源码资源
3.Unity3D MMORPG核心技术:AOI算法源码分析与详解
4.Unity源码学习遮罩:Mask与Mask2D
5.UGUI源码阅读之Mask
6.Unity的URP HDRP等SRP管线详解(包含源码分析)

unity官方源码_unity 源码

unity urp源码学习一(渲染流程)

       sprt的一些基础:

       绘制出物体的关键代码涉及设置shader标签(例如"LightMode" = "CustomLit"),以确保管线能够获取正确的源码shader并绘制物体。排序设置(sortingSettings)管理渲染顺序,源码如不透明物体从前至后排序,源码透明物体从后至前,源码以减少过绘制。源码区块链OEO源码逐物体数据的源码启用、动态合批和gpuinstance支持,源码以及主光源索引等配置均在此进行调整。源码

       过滤规则(filteringSettings)允许选择性绘制cullingResults中的源码几何体,依据RenderQueue和LayerMask等条件进行过滤。源码

       提交渲染命令是源码关键步骤,无论使用context还是源码commandbuffer,调用完毕后必须执行提交操作。源码例如,源码context.DrawRenderers()用于绘制场景中的网格体,本质上是执行commandbuffer以渲染网格体。

       sprt管线的基本流程涉及context的命令贯穿整个渲染流程。例如,首次调用渲染不透明物体,随后可能调用渲染半透明物体、天空盒、特定层渲染等。流程大致如下:

       多相机情况也通过单个context实现渲染。

       urp渲染流程概览:

       渲染流程始于遍历相机,如果是eclipse导入源码视频游戏相机,则调用RenderCameraStack函数。此函数区分base相机和Overlay相机:base相机遍历渲染自身及其挂载的Overlay相机,并将Overlay内容覆盖到base相机上;Overlay相机仅返回,不进行渲染操作。

       RenderCameraStack函数接受CameraData参数,其中包含各种pass信息。添加pass到m_ActiveRenderPassQueue队列是关键步骤,各种pass类实例由此添加至队列。

       以DrawObjectsPass为例,其渲染流程在UniversialRenderer.cs中实现。首先在Setup函数中将pass添加到队列,执行时,执行队列内的pass,并按顺序提交渲染操作。

Unity开源项目精选AssetStudio:提取Unity游戏的资源

       大智,你的技术探路者,带您探索Unity开源项目之AssetStudio,一个用于挖掘、提取及导出Unity游戏资源的利器。

       AssetStudio,源码地址:github.com/Perfare/Asse...

       这个工具专为Unity游戏开发者设计,帮助您轻松获取游戏资源。无论您是寻求灵感,还是希望深入研究游戏内部结构,AssetStudio都是unity lerp函数源码理想选择。

       使用AssetStudio,您能够探索、提取和导出asset和assetbundle,解锁Unity游戏资源的秘密。这个开源项目为开发者提供了便利,让您能够快速、高效地进行资源管理。

       我是大智,技术探路者,下期再见。别忘了点赞、收藏,与更多开发者共享这份宝贵资源。

Unity3D MMORPG核心技术:AOI算法源码分析与详解

       Unity3D是一款跨平台的游戏引擎,在游戏开发领域应用广泛。MMORPG(大型多人在线角色扮演游戏)作为游戏开发的重要领域,在Unity3D中也得到广泛应用。玩家之间的交互是游戏开发中一个重要问题。如何高效处理这些交互?AOI(Area of Interest)算法提供了一个有效解决方案。

       AOI算法是一种空间索引算法,能够依据玩家位置快速确定周围玩家,从而提高交互效率。实现AOI算法通常采用Quadtree(四叉树)或Octree(八叉树),将空间划分为多个区域,每个区域可包含若干玩家。招商管理系统源码

       以下为AOI算法实现方法和代码解释。

       **实现方法

**

       将空间划分为多个区域(Quadtree或Octree)。

       玩家移动、加入或离开时,更新对应区域。

       玩家查找周围玩家时,遍历相关区域。

       **代码实现

**

       使用C#语言实现Quadtree。

       编写函数,实现玩家进入/离开、移动和查找玩家。

       通过上述方法和代码,AOI算法可以在MMORPG中高效处理玩家交互,优化游戏性能和玩家体验。

Unity源码学习遮罩:Mask与Mask2D

       Unity源码学习遮罩详解:Mask与Mask2D

       UGUI裁切功能主要有两种方式:Mask和Mask2D。它们各自有独特的原理和适用场景。

       1. Mask原理与实现

       Mask利用IMaskable和IMaterialModifier功能,通过指定一张裁切图,如圆形,限定子元素的显示区域。GPU通过StencilBuffer(一个用于保存像素标记的缓存)来控制渲染,当子元素像素位于Mask指定区域时,才会被渲染。

       StencilBuffer像一个画板,每个像素有一个1字节的亚马逊试客源码内存区域,记录是否被遮盖。当多个UI元素叠加时,通过stencil buffer传递信息,实现精确裁切。

       2. Mask2D原理

       RectMask2D则基于IClippable接口,其裁剪基于RectTransform的大小。在C#层,它找出所有RectMask2D的交集并设置剪裁区域,然后Shader层依据这些区域判断像素是否在内,不满足则透明度设为0。

       RectMask2D的性能优化在于无需依赖Image组件,直接使用RectTransform的大小作为裁剪区域。

       3. 性能区别

       Mask需要Image组件,裁剪区域受限于Image,而RectMask2D独立于Image,裁剪灵活。因此,Mask2D在不需要复杂裁剪时更高效。

       总结:虽然Mask和Mask2D各有优势,选择哪种遮罩取决于具体需求,合理使用能提高性能和用户体验。

UGUI源码阅读之Mask

       Mask主要基于模版测试来进行裁剪,因此先来了解一下unity中的模版测试。

       Unity Shader中的模版测试配置代码大致如上

       模版测试的伪代码大概如上

       传统的渲染管线中,模版测试和深度测试一般发生在片元着色器(Fragment Shader)之后,但是现在又出现了Early Fragment Test,可以在片元着色器之前进行。

       Mask直接继承了UIBehaviour类,同时继承了ICanvasRaycastFilter和IMaterialModifier接口。

       Mask主要通过GetModifiedMaterial修改graphic的Material。大致流程:

       1.获取当前Mask的层stencilDepth

       2.StencilMaterial.Add修改baseMaterial的模板测试相关配置,并将其缓存

       3.StencilMaterial.Add设置一个unmaskMaterial,用于最后将模板值还原

       MaskableGraphic通过MaskUtilities.GetStencilDepth计算父节点的Mask层数,然后StencilMaterial.Add修改模板测试的配置。

       通过Frame Debugger看看具体每个batch都做了什么。先看第一个,是Mask1的m_MaskMaterial,关注Stencil相关的数值,白色圆内的stencil buffer的值设置为1

       这个是Mask2的m_MaskMaterial,根据stencil的计算公式,Ref & ReadMask=1,Comp=Equal,只有stencil buffer & ReadMask=1的像素可以通过模板测试,即第一个白色圆内的像素,然后Pass=Replace,会将通过的像素写入模板值(Ref & WriteMask=3),即两圆相交部分模板值为3

       这个是RawImage的Material,只有模板值等于3的像素可以通过模板测试,所以只有两个圆相交的部分可以写入buffer,其他部分舍弃,通过或者失败都不改变模板值

       这是Mask2的unmaskMaterial,将两个圆相交部分的模板值设置为1,也就是还原Mask2之前的stencil buffer

       这是Mask1的unmaskMaterial,将第一个圆内的模板值设置为0,还有成最初的stencil buffer

       可以看到Mask会产生比较严重的overdraw。

       2.drawcall和合批

       每添加一个mask,一般会增加2个drawcall(加上mask会阻断mask外和mask内的合批造成的额外drawcall),一个用于设置遮罩用的stencil buffer,一个用于还原stencil buffer。

       如图,同一个Mask下放置两个使用相同的RawImage,通过Profiler可以看到两个RawImage可以进行合批

       如图,两个RawImage使用相同的,它们处于不同的Mask之下,但是只要m_StencilValue相等,两个RawImage还是可以进行合批。同时可以看到Mask1和Mask1 (1),Mask2和Mask2 (1)也进行了合批,说明stencilDepth相等的Mask符合合批规则也可以进行合批。

       StencilMaterial.Add会将修改后的材质球缓存在m_List中,因此调用StencilMaterial.Add在相同参数情况下将获得同一个材质球。

Unity的URP HDRP等SRP管线详解(包含源码分析)

       SRP为可编程渲染管线,Unity中通过C#能自定义多种渲染管线,包含通用管线(URP)与高清管线(HDRP)。

       URP通用管线,综合性能与表现力,适合手游或端游场景;HDRP为高清管线,拥有极致表现力,适用于端游、影视制作。

       大体结构包括:RenderPipelineAsset、RenderPipelines、Renderer与RenderPass。RenderFeature为辅助组件,配置特定事件并注入到Renderer中的时机进行执行。

       具体分析:在RenderPipelineAsset中,创建多条渲染管线。RenderPipelines则构成具体渲染流程,于每一帧调用Render()处理本帧命令,绘制图像。

       Renderer维护ScriptableRenderPass列表,每帧通过SetUp()注入Pass执行渲染过程,最终得到序列化结果(ScriptableRendererData)。

       RenderPass实现具体渲染逻辑,其Execute()函数执行于每一帧,实现渲染功能。

       RenderFeature主要提供“空壳”结构,通过配置RenderPassEvent并注入实例到Renderer中。

       总结:理解URP架构,能掌握渲染管线核心。后续将继续分享渲染案例、实用工具等内容。

《Unity 3D 内建着色器源码剖析》第七章 Unity3D全局光照和阴影

       在Unity 3D中,全局光照和阴影是实现逼真渲染的重要手段。全局光照分为烘焙式和实时两种方式。静态物体通过烘焙式全局照明(Baked GI)处理,预先计算间接照明并存储,而动态物体则通过光探针获取静态物体的反射光。引擎提供了点光源、聚光灯、有向平行光源和区域面光源等光源类型,其中环境光源与天空盒系统关联,可模拟日出日落效果。

       实时光照模式下的光源仅产生直接照明,不涉及间接照明,但在Unity 3D的Lighting设置中,勾选Realtime Global Illumination选项,可实现全局照明,主要适用于主机平台游戏。烘焙式光照贴图通过预先计算并存储直接和间接照明信息,节省运行时计算,但内存占用较大。

       混合光照模式允许光源实时调整属性,提供动态照明,包括Baked Indirect(仅预计算间接照明)、Shadowmask(预计算静态阴影)和Subtractive(烘焙光源信息)等。其中,Shadowmask存储静态阴影信息,Subtractive模式下动态阴影实时投射到静止物体。

       光探针技术弥补了光照贴图对动态物体的限制,通过预计算并插值光照信息,提供更真实的动态物体照明效果。然而,光探针有其局限性,如不适用于大物体内部和大凹面表面。此外,还有反射用光探针,用于环境映射。

       渲染阴影功能通过光源空间和屏幕空间确定阴影区域,使用阴影贴图(如阴影映射)和层叠式阴影贴图技术来减少透视走样的问题,提高渲染效率和精度。通过这些技术,Unity 3D能为游戏场景提供丰富多样的光照效果和阴影细节。

【本文网址:http://q7.net.cn/html/02b984290155.html 欢迎转载】

copyright © 2016 powered by 皮皮网   sitemap