1.读写锁ReadWriteLock的实现原理
2.ptmalloc2 源码剖析3 -- 源码剖析
3.Linux内核源码分析:Linux进程描述符task_ struct结构体详解
4.Vuex 4源码学习笔记 - mapState、mapGetters、mapActions、mapMutations辅助函数原理(六)
5.源码详解Pytorch的state_dict和load_state_dict
6.Linux内核源码解析---cgroup实现之整体架构与初始化
读写锁ReadWriteLock的实现原理
理解读写锁的实现原理,首先明确几个关键概念。读写锁,张贴栏源码顾名思义,可以同时支持读操作和写操作。读操作可以并行,而写操作则具有独占性。读写锁内部使用一个状态变量(如state)来表示锁的当前状态。
读写锁提供了几个核心方法:getReadLockCount()、getReadHoldCount()、getWriteHoldCount()和isWriteLocked()。getReadLockCount()返回读锁的总数量,getReadHoldCount()表示当前线程持有读锁的次数,getWriteHoldCount()则为写锁的持有次数,isWriteLocked()判断当前锁是否处于写锁状态。
实现原理源码分析:核心在于使用一个状态变量state来表示读写锁的状态。state的值可以是以下几种情况:0表示没有锁,1表示写锁,2表示读锁,3表示写锁与读锁同时存在。读锁和写锁之间存在兼容性,即写锁可以重入,读锁也同样可以重入。
写锁的加锁操作,当尝试加锁时,检查state是否为0(无锁状态),如果是,则将state设置为1(写锁状态),并返回成功。如果state已为1或3,tomcat请求超时源码则说明已有写锁存在,无法再加写锁,直接返回失败。
读锁的加锁操作,检查state是否为0(无锁状态)或2(已有读锁),如果是,则可成功加锁,将state设置为2(读锁状态),并返回成功。如果state为1(写锁状态)或3(写锁与读锁同时存在),则表示已有写锁存在,读锁无法加锁,返回失败。
写锁与读锁的释放操作,都是将state设置回0,表示锁已经被释放。释放操作后,系统会自动检查是否有其他线程可以加锁。
注意事项:在使用读写锁时,需要特别注意重入锁的情况。读锁和写锁都允许重入,即线程可以多次加锁,但在加锁前应先检查state,避免不必要的操作。
总结:读写锁的实现主要通过状态变量来管理锁的状态,通过方法调用控制锁的加锁和释放。理解状态变量的含义和操作方法是关键。在实际应用中,正确使用读写锁可以显著提高并发程序的性能。
:深入学习Java并发编程,可以参考《Effective Java》、《Java Concurrency in Practice》等书籍,双层pdf生成源码同时关注Java官方文档关于读写锁的说明。
ptmalloc2 源码剖析3 -- 源码剖析
文章内容包含平台配置、malloc_state、arena实例、new_arena、arena_get、arena_get2、heap、new_heap、grow_heap、heap_trim、init、malloc_hook、malloc_hook_ini、ptmalloc_init、malloc_consolidate、public_mALLOc、sYSMALLOc、freepublic_fREe、systrim等关键模块。
平台配置为 Debian AMD,使用ptmalloc2作为内存分配机制。
malloc_state 表征一个arena,全局只有一个main_arena实例,arena实例通过malloc_init_state()函数初始化。
当线程尝试获取arena失败时,通过new_heap获取内存区域,构建非main_arena实例。
arena_get和arena_get2分别尝试线程的私有实例和全局arena链表获取arena,若获取失败,则创建new_arena。
heap表示mmap映射连续内存区域,抖音个人源码每个arena至少包含一个heap,且起始地址为HEAP_MAX_SIZE整数倍。
new_heap尝试mmap映射内存,实现内存对齐,确保起始地址满足要求。
grow_heap用于内存扩展与收缩,依据当前heap状态调用mprotect或mmap进行操作。
heap_trim释放heap,条件为当前heap无已分配chunk或可用空间不足。
init阶段,通过malloc_hook、realloc_hook和__memalign_hook函数进行内存分配。
malloc_consolidate合并fastbins和unsortedbin,优化内存分配。
public_mALLOc作为内存分配入口。
sYSMALLOc尝试系统申请内存,实现内存分配。
freepublic_fREe用于释放内存,针对map映射内存调用munmap,其他情况归还给对应arena。
systrim使用sbrk归还内存。
Linux内核源码分析:Linux进程描述符task_ struct结构体详解
Linux内核通过一个task_struct结构体来管理进程,这个结构体包含了一个进程所需的所有信息。它定义在include/linux/sched.h文件中,包含许多字段,其中state字段表示进程的当前状态。常见的状态包括运行、阻塞、等待信号、终止等。进程状态的切换和原因可通过内核函数进行操作。PID是在线运行网页源码系统用来唯一标识正在运行的每个进程的数字标识,tgid成员表示线程组中所有线程共享的PID。进程内核栈用于保存进程在内核态执行时的临时数据和上下文信息,通常为几千字节。内核将thread_info结构与内核态线程堆栈结合在一起,占据连续的两个页框,以便于访问线程描述符和栈。获取当前运行进程的thread_info可通过esp栈指针实现。thread_info结构包含task字段,指向进程控制块(task_struct)。task_struct结构体的flags字段用于记录进程标记或状态信息,如创建、超级用户、核心转储、信号处理、退出等。而real_parent和parent成员表示进程的亲属关系,用于查找和处理进程树中的亲属关系。
Vuex 4源码学习笔记 - mapState、mapGetters、mapActions、mapMutations辅助函数原理(六)
在前一章中,我们通过了解Vuex的dispatch功能,逐步探索了Vuex数据流的核心工作机制。通过这一过程,我们对Vuex的整体运行流程有了清晰的把握,为深入理解其细节奠定了基础。本章节,我们将聚焦于Vuex的辅助函数,包括mapState、mapGetters、mapActions、mapMutations以及createNamespacedHelpers,这些函数旨在简化我们的开发流程,使其更符合实际应用需求。
请注意,这些辅助函数在Vue 3的Composition API中不适用,因为它们依赖于组件实例(this),而在Setup阶段,this尚未被创建。因此,它们仅适用于基于选项的Vue 2或Vue 3经典API。
以mapState为例,它允许我们以计算属性的形式访问Vuex中的状态。当组件需要获取多个状态时,通过mapState生成的计算属性可以显著减少代码冗余。若映射的计算属性名称与state子节点名称相同,只需传入字符串数组。此外,通过对象展开运算符,我们能轻松地在已有计算属性中添加新的映射。
深入代码层面,mapState的核心功能在src/helpers.js文件中得以实现。通过normalizeNamespace函数统一处理命名空间和map数据,然后利用normalizeMap函数将数组或对象格式数据标准化,最终返回一个封装后的函数对象。通过这种方式,mapState有效简化了状态访问的实现。
mapGetters、mapMutations、mapActions遵循相似的模式,通过normalizeNamespace统一输入,然后使用normalizeMap统一数据处理,最后返回对象格式的函数集合,支持对象展开运算符的使用。这些函数简化了获取、执行actions和mutations的过程。
createNamespacedHelpers则是为管理命名空间模块提供便利。通过传入命名空间值,它生成一组组件绑定辅助函数,简化了针对特定命名空间的模块操作。此函数通过bind方法巧妙地将namespace参数绑定到返回的函数集合中,实现了高效、灵活的命名空间管理。
本章节对mapState的实现原理进行了深入分析,并展示了其余辅助函数的相似之处。通过理解这些函数的工作机制,我们能更高效地应用Vuex,优化组件间的交互与状态管理。利用这些工具,开发者能够更专注于业务逻辑的实现,而不是繁琐的状态获取和管理。
在探索更多前端知识的旅程中,让我们一起关注公众号小帅的编程笔记,每天更新精彩内容,与编程社区一同成长。
源码详解Pytorch的state_dict和load_state_dict
在Pytorch中,保存和加载模型的一种方式是通过调用model.state_dict(),该函数返回的是一个OrderDict,包含网络结构的名称及其对应的参数。要深入了解实现细节,我们先关注其内部逻辑。
在state_dict函数中,主要遍历了四个元素:_parameters,_buffers,_modules和_state_dict_hooks。前三种在先前的文章中已有详细介绍,而最后一种在读取state_dict时执行特定操作,通常为空,因此不必过多考虑。重要的一点是,当读取Module时,采用递归方式,并以.作为分割符号,方便后续load_state_dict加载参数。
最后,该函数输出了三种关键参数。
接下来,让我们深入load_state_dict函数,它主要分为两部分。
首先,load(self)函数会递归地恢复模型参数。其中,_load_from_state_dict源码在文末附上。
在load_state_dict中,state_dict表示你之前保存的模型参数序列,而local_state表示你当前模型的结构。
load_state_dict的主要作用在于,假设我们需恢复名为conv.weight的子模块参数,它会以递归方式先检查conv是否存在于state_dict和local_state中。如果不在,则将conv添加到unexpected_keys中;如果在,则进一步检查conv.weight是否存在,如果都存在,则执行param.copy_(input_param),完成参数拷贝。
在if strict部分中,主要判断参数拷贝过程中是否有unexpected_keys或missing_keys,如有,则抛出错误,终止执行。当然,当strict=False时,会忽略这些细节。
总结而言,state_dict和load_state_dict是Pytorch中用于保存和加载模型参数的关键函数,它们通过递归方式确保模型参数的准确恢复。
Linux内核源码解析---cgroup实现之整体架构与初始化
cgroup在年由Google工程师开发,于年被融入Linux 2.6.内核。它旨在管理不同进程组,监控一组进程的行为和资源分配,是Docker和Kubernetes的基石,同时也被高版本内核中的LXC技术所使用。本文基于最早融入内核中的代码进行深入分析。
理解cgroup的核心,首先需要掌握其内部的常用术语,如子系统、层级、cgroupfs_root、cgroup、css_set、cgroup_subsys_state、cg_cgroup_link等。子系统负责控制不同进程的行为,例如CPU子系统可以控制一组进程在CPU上执行的时间占比。层级在内核中表示为cgroupfs_root,一个层级控制一批进程,层级内部绑定一个或多个子系统,每个进程只能在一个层级中存在,但一个进程可以被多个层级管理。cgroup以树形结构组织,每一棵树对应一个层级,层级内部可以关联一个或多个子系统。
每个层级内部包含的节点代表一个cgroup,进程结构体内部包含一个css_set,用于找到控制该进程的所有cgroup,多个进程可以共用一个css_set。cgroup_subsys_state用于保存一系列子系统,数组中的每一个元素都是cgroup_subsys_state。cg_cgroup_link收集不同层级的cgroup和css_set,通过该结构可以找到与之关联的进程。
了解了这些概念后,可以进一步探索cgroup内部用于结构转换的函数,如task_subsys_state、find_existing_css_set等,这些函数帮助理解cgroup的内部运作。此外,cgroup_init_early和cgroup_init函数是初始化cgroup的关键步骤,它们负责初始化rootnode和子系统的数组,为cgroup的使用做准备。
最后,需要明确Linux内一切皆文件,cgroup基于VFS实现。内核启动时进行初始化,以确保系统能够正确管理进程资源。cgroup的初始化过程分为早期初始化和常规初始化,其中早期初始化用于准备cpuset和CPU子系统,确保它们在系统运行时能够正常工作。通过这些步骤,我们可以深入理解cgroup如何在Linux内核中实现资源管理和进程控制。