1.Hadoop3.3.5集成Hive4+Tez-0.10.2+iceberg踩坑过程
2.Hive 编程专题之 - 自定义函数 Java 篇
3.大数据笔试真题集锦---第五章:Hive面试题
4.beehive 源码阅读- go 语言的源码自动化机器
5.mimikatz源码分析-lsadump模块(注册表)
Hadoop3.3.5集成Hive4+Tez-0.10.2+iceberg踩坑过程
在集成Hadoop 3.3.5、Hive 4、下载Tez 0..2以及Iceberg 1.3的源码过程中,我们面对了诸多挑战,下载并在多方寻找资料与测试后成功完成集成。源码以下为集成步骤的下载ht在线查看源码详细说明。
首先,源码确保Hadoop版本为3.3.5,下载这是源码Hive运行的前置需求。紧接着,下载安装Tez作为计算引擎。源码由于Tez 0..2的下载依赖版本为3.3.1,与当前的源码Hadoop版本不符,因此,下载我们需手动编译Tez以避免执行SELECT操作时出现的源码错误。编译前,下载官方发布的Tez源码(release-0..2),并解压以获取编译所需文件。编译过程中,注意更新pom.xml文件中的Hadoop版本号至3.3.5,同时配置protoc.path为解压后的protoc.exe路径,并添加Maven仓库源。确保只编译tez-0..2-minimal.tar.gz,避免不必要的编译耗时。完成后,将编译好的文件上传至HDFS,并在主节点hadoop配置目录下新增tez-site.xml,同步配置至所有节点后重启集群。
Hive作为基于Hadoop的数据仓库工具,提供SQL查询和数据分析能力,华侨娱乐源码新版本Hive 4集成了Iceberg 1.3,无需额外配置。本次集成步骤包括下载、解压、配置环境变量及初始化元数据。下载最新的Hive 4.0.0-beta-1版本,解压并配置环境变量,删除指定jar文件以避免提示错误。修改配置文件以设置Hive环境变量,并确保连接信息正确。初始化Hive元数据后,可以使用hive执行文件启动Hive服务。编写hive_management.sh脚本以实现Hive服务的管理。
通过beeline命令进行连接,执行创建数据库和表的SQL语句,使用Hive进行数据插入和查询。值得注意的是,Hive 4.0.0-beta-1已集成Iceberg 1.3,因此无需额外加载jar包,只需将计算引擎设置为Tez。若需更新Iceberg版本,需下载Hive源码,修改依赖并编译特定包。
为了创建Iceberg分区表,使用熟悉的Hive命令语法,例如创建分区表时使用STORED BY ICEBERG。分区规范的语法也与Spark相似,可在HMS中获取Iceberg分区详细信息,并执行相应的10011011的源码数据转换操作。参考文档提供了从安装至配置的详细指导,确保了集成过程的顺利进行。
Hive 编程专题之 - 自定义函数 Java 篇
Hive函数分为内置函数与自定义函数,内建函数包括字符、数值、日期与转换等类型。
自定义函数类似于传统商业数据库中的编译函数,如SQL Server中使用C#解决内建函数无法解决的问题,Oracle中则使用Java编写的Jar扩展功能,Hive中的自定义函数同样依赖Jar,提供Java编写程序以处理内置函数无法达到的功能。
使用Java编写Hive自定义函数步骤包括:
1. 常看所有内置与自定义函数。
2. Java或Scala编写自定义函数。
3. 使用Eclipse或其他Java编辑工具生成JAR文件。
4. 将生成的JAR文件放置于HDFS中,Hive即可应用。
5. 使用Java编写简单的Hive自定义函数,步骤如下:
5.1 使用Eclipse建立Maven项目。
5.2 引入特定的Hive/Hadoop JAR。
5.3 从Hive源代码或Hadoop基类库中寻找所需库。
5.4 编写简单的大写转换函数。
5.5 导出Eclipse,导入Hive类路径。
5.6 定义Hive函数,需带上全路径,即类的包路径。
5.7 修改Java代码,再执行相关步骤。
通过以上步骤,execve函数源码成功使用Java编写一个供Hive调用的函数。
大数据笔试真题集锦---第五章:Hive面试题
我会不间断地更新维护,希望对正在寻找大数据工作的朋友们有所帮助。 第五章目录 第五章 Hive 5.1 Hive 运行原理(源码级) 1.1 reduce端join 在reduce端,对两个表的数据分别标记tag,发送数据。根据分区分组规则获取相同key的数据,再根据tag进行join操作,完成实际连接。 1.2 map端join 将小表复制到每个map task的内存中,仅扫描大表,对大表中key在小表中存在时进行join操作。使用DistributedCache.addCacheFile设置小表,通过标准IO获取数据。 1.3 semi join 先将参与join的表1的key复制到表3中,复制多份到各map task,过滤不在新表3的表2数据,最后进行reduce。 5.2 Hive 建表5.3.1 传统方式建表
定义数据类型,如:TINYINT, STRING, TIMESTAMP, DECIMAL。 使用ARRAY, MAP, STRUCT结构。5.3.2 CTAS查询建表
创建表时指定表名、存储格式、数据来源查询语句。 缺点:默认数据类型范围限制。5.3.3 Like建表
通过复制已有表的结构来创建新表。5.4 存储格式和压缩格式
选择ORC+bzip/gzip作为源存储,ORC+Snappy作为中间存储。 分区表单文件不大采用gzip压缩,ztuo源码下载桶表使用bzip或lzo支持分片压缩。 设置压缩参数,如"orc.compress"="gzip"。5.5 内部表和外部表
外部表使用external关键字和指定HDFS目录创建。 内部表在创建时生成对应目录的文件夹,外部表以指定文件夹为数据源。 内部表删除时删除整个文件夹,外部表仅删除元数据。5.6 分区表和分桶表
分区表按分区字段拆分存储,避免全表查询,提高效率。 动态分区通过设置参数开启,根据字段值决定分区。 分桶表依据分桶字段hash值分组拆分数据。5.7 行转列和列转行
行转列使用split、explode、laterview,列转行使用concat_ws、collect_list/set。5.8 Hive时间函数
from_unixtime、unix_timestamp、to_date、month、weekofyear、quarter、trunc、current_date、date_add、date_sub、datediff。 时间戳支持转换和截断,标准格式为'yyyy-MM-dd HH:mm:ss'。 month函数基于标准格式截断,识别时截取前7位。5.9 Hive 排名函数
row_number、dense_rank、rank。5. Hive 分析函数:Ntile
效果:排序并分桶。 ntile(3) over(partition by A order by B)效果,可用于取前%数据统计。5. Hive 拉链表更新
实现方式和优化策略。5. Hive 排序
order by、order by limit、sort by、sort by limit的原理和应用场景。5. Hive 调优
减少distinct、优化map任务数量、并行度优化、小文件问题解决、存储格式和压缩格式设置。5. Hive和Hbase区别
Hive和Hbase的区别,Hive面向分析、高延迟、结构化,Hbase面向编程、低延迟、非结构化。5. 其他
用过的开窗函数、表join转换原理、sort by和order by的区别、交易表查询示例、登录用户数量查询、动态分区与静态分区的区别。beehive 源码阅读- go 语言的自动化机器
beehive源码深入解析:Go语言中的自动化机器设计
beehive的核心模块系统在包<p>bees</p>中体现其独特的解耦设计,这使得系统操作简便且易于扩展。只需要少量的学习,就能扩展自己的beehive功能。这里的"bee"代表Worker,执行具体任务,类似于采蜜的工蜂;而"hive"则是一个WorkerPool的工厂,通过简单配置(如一个token)即可创建针对特定任务的bee。
"chain"是连接事件和处理的关键,它将事件(如博客更新)与响应(如发送邮件)关联起来,通过事件通道(eventChan)触发并执行相应的action。WebBee的实现展示了如何在Run方法中接收事件并唤醒相应的bee,同时ServeHTTP函数负责http请求处理,暴露API供外部调用。
事件(Event)的处理通过<p>handleEvents</p>函数实现,它接收事件并将事件与对应的bee关联,进一步通过chains链接Event和Action,实现bee间的协作。Action的执行由<p>execAction</p>函数负责,可以处理预设选项或运行时传入的选项。
总的来说,beehive的自动化机器设计通过巧妙的解耦、事件驱动和灵活的链式处理,提供了一种高效且可扩展的编程模式。
mimikatz源码分析-lsadump模块(注册表)
mimikatz是一款内网渗透中的强大工具,本文将深入分析其lsadump模块中的sam部分,探索如何从注册表获取用户哈希。
首先,简要了解一下Windows注册表hive文件的结构。hive文件结构类似于PE文件,包括文件头和多个节区,每个节区又有节区头和巢室。其中,巢箱由HBASE_BLOCK表示,巢室由BIN和CELL表示,整体结构被称为“储巢”。通过分析hive文件的结构图,可以更直观地理解其内部组织。
在解析过程中,需要关注的关键部分包括块的签名(regf)和节区的签名(hbin)。这些签名对于定位和解析注册表中的数据至关重要。
接下来,深入解析mimikatz的解析流程。在具备sam文件和system文件的情况下,主要分为以下步骤:获取注册表system的句柄、读取计算机名和解密密钥、获取注册表sam的句柄以及读取用户名和用户哈希。若无sam文件和system文件,mimikatz将直接通过官方API读取本地机器的注册表。
在mimikatz中,会定义几个关键结构体,包括用于标识操作的注册表对象和内容的结构体(PKULL_M_REGISTRY_HANDLE)以及注册表文件句柄结构体(HKULL_M_REGISTRY_HANDLE)。这些结构体包含了文件映射句柄、映射到调用进程地址空间的位置、巢箱的起始位置以及用于查找子键和子键值的键巢室。
在获取注册表“句柄”后,接下来的任务是获取计算机名和解密密钥。密钥位于HKLM\SYSTEM\ControlSet\Current\Control\LSA,通过查找键值,将其转换为四个字节的密钥数据。利用这个密钥数据,mimikatz能够解析出最终的密钥。
对于sam文件和system文件的操作,主要涉及文件映射到内存的过程,通过Windows API(CreateFileMapping和MapViewOfFile)实现。这些API使得mimikatz能够在不占用大量系统资源的情况下,方便地处理大文件。
在获取了注册表系统和sam的句柄后,mimikatz会进一步解析注册表以获取计算机名和密钥。对于密钥的获取,mimikatz通过遍历注册表项,定位到特定的键值,并通过转换宽字符为字节序列,最终组装出密钥数据。
接着,解析过程继续进行,获取用户名和用户哈希。在解析sam键时,mimikatz首先会获取SID,然后遍历HKLM\SAM\Domains\Account\Users,解析获取用户名及其对应的哈希。解析流程涉及多个步骤,包括定位samKey、获取用户名和用户哈希,以及使用samKey解密哈希数据。
对于samKey的获取,mimikatz需要解密加密的数据,使用syskey作为解密密钥。解密过程根据加密算法(rc4或aes)有所不同,但在最终阶段,mimikatz会调用系统函数对数据进行解密,从而获取用户哈希。
在完成用户哈希的解析后,mimikatz还提供了一个额外的功能:获取SupplementalCreds。这个功能可以解析并解密获取对应用户的SupplementalCredentials属性,包括明文密码及哈希值,为用户提供更全面的哈希信息。
综上所述,mimikatz通过解析注册表,实现了从系统中获取用户哈希的高效功能,为内网渗透提供了强大的工具支持。通过深入理解其解析流程和关键结构体的定义,可以更好地掌握如何利用mimikatz进行深入的安全分析和取证工作。
2024-11-21 02:32851人浏览
2024-11-21 02:011187人浏览
2024-11-21 01:482074人浏览
2024-11-21 01:342115人浏览
2024-11-21 00:192215人浏览
2024-11-21 00:072375人浏览
1.你们遇到蓝牙助收收费的情况没?居然还没提示2.android手机是用不了蓝牙发软件的.我现在用不了手机浏览器.用电脑怎么安装个UC进手机呢?求教。谢谢3.这是怎么回事?网秦杀毒软件报蓝牙助手扣费!
重庆市江北区知识产权运营公共服务平台启动上线。7月15日下午,重庆市江北区知识产权运营公共服务平台正式上线。该平台是重庆市首个依托国家平台建设、服务半径辐射全市范围的知识产权服务平台,能够实现知识产权
立法院還沒正式開議,就出現動員場面!不過這不是朝野議事攻防,而是知名電視劇第二季開拍劇情。這次劇組美術被捕捉到,有臨演妝髮酷似王世堅以及年輕版賴士葆,滿滿細節,讓觀眾相當好奇。拍攝現場臨場感十足 議場