皮皮网

皮皮网

【微信pc蛋蛋源码】【五线开花副图指标源码】【股民老丁量比指标源码公式】怎么得到guava的源码_怎么得到源代码

时间:2024-11-20 16:45:47 分类:娱乐

1.快速学习jav的得到方法有哪些?
2.详解布隆过滤器的原理和实现
3.适合计算机专业学生的论坛有哪些?
4.List的拆分的几种方式
5.Google限速神器——RateLimiter分享

怎么得到guava的源码_怎么得到源代码

快速学习jav的方法有哪些?

       作者:Yifen Hao

       链接:ewRedisBitSet(store*redis.Client,keystring,bitsuint)*redisBitSet{ return&redisBitSet{ store:store,key:key,bits:bits,}}

       到这里位数组操作就全部实现了,接下来看下如何通过 k 个散列函数计算出 k 个位点

       k 次散列计算出 k 个位点

//k次散列计算出k个offsetfunc(f*Filter)getLocations(data[]byte)[]uint{ //创建指定容量的源码源代切片locations:=make([]uint,maps)//maps表示k值,作者定义为了常量:fori:=uint(0);i<maps;i++{ //哈希计算,使用的是"MurmurHash3"算法,并每次追加一个固定的i字节进行计算hashValue:=hash.Hash(append(data,byte(i)))//取下标offsetlocations[i]=uint(hashValue%uint(f.bits))}returnlocations}

       插入与查询

       添加与查询实现就非常简单了,组合一下上面的得到函数就行。

//添加元素func(f*Filter)Add(data[]byte)error{ locations:=f.getLocations(data)returnf.bitSet.set(locations)}//检查是源码源代微信pc蛋蛋源码否存在func(f*Filter)Exists(data[]byte)(bool,error){ locations:=f.getLocations(data)isSet,err:=f.bitSet.check(locations)iferr!=nil{ returnfalse,err}if!isSet{ returnfalse,nil}returntrue,nil}改进建议

       整体实现非常简洁高效,那么有没有改进的得到空间呢?

       个人认为还是有的,上面提到过自动计算最优 m 与 k 的源码源代数学公式,如果创建参数改为:

       预期总数量expectedInsertions

       期望误差falseProbability

       就更好了,得到虽然作者注释里特别提到了误差说明,源码源代但是得到实际上作为很多开发者对位数组长度并不敏感,无法直观知道 bits 传多少预期误差会是源码源代多少。

//NewcreateaFilter,得到五线开花副图指标源码storeisthebackedredis,keyisthekeyforthebloomfilter,//bitsishowmanybitswillbeused,mapsishowmanyhashesforeachaddition.//bestpractices://elements-meanshowmanyactualelements//whenmaps=,formula:0.7*(bits/maps),bits=*elements,theerrorrateis0.<1e-4//fordetailederrorratetable,seeblogs.com/scott/p...

Google限速神器——RateLimiter分享

       在微服务架构中,限流组件是源码源代不可或缺的要素,它控制着同一时间访问服务的得到并发量,对于系统稳定至关重要。源码源代Google的得到guava库提供了一款名为RateLimiter的限流工具。它与Semaphore不同,股民老丁量比指标源码公式Semaphore侧重于并发访问的数量限制,而RateLimiter则是通过设置许可证速率来限制访问速率。默认情况下,许可证按照预设速率平稳分配,保证系统的cm7指标公式源码稳定运行。

       RateLimiter是线程安全的,但不保证公平性。虽然它没有直接的构造方法,但可以通过RateLimiter.create静态方法创建实例。使用环境要求JDK以上,无锡桶装水溯源码售价查询这可能限制了其在某些场景中的实际应用。RateLimiter的实现机制基于stopwatch,通过调整阻塞时长来实现速率控制。

       一个简单的示例展示了如何限制线程执行速率,比如将每秒执行次数限制为2次。通过代码演示,我们观察到无论运行次数多少,线程执行间隔始终为ms,这是ms除以速率的结果。这表明RateLimiter能够有效控制执行速率。

       尽管RateLimiter可能不适用于所有生产环境,因其对JDK版本的高要求和可能的实验性质,但在学习和研究中,它提供了宝贵的资源。作为学习工具,RateLimiter的源码提供了深入理解限流原理的机会。然而,实际应用时需要权衡其限制和潜在风险。今天的内容到此为止,期待你对限流组件有更深的理解。晚安!

       - END -