皮皮网
皮皮网

【智能推广系统源码】【python源码安装命令】【php代刷源码】hystrix源码使用

时间:2025-01-06 13:44:00 来源:小偷phpphp小说源码

1.springcloud2022?
2.Hystrix技术指南(7)故障切换的源用运作流程原理分析(含源码)
3.Spring Boot 项目配合Hystrix 实现全局RestController超时熔断(api超过30秒返回timeout)
4.Hystrix介绍

hystrix源码使用

springcloud2022?

       å¾®æœåŠ¡æ¡†æž¶ä¹‹SpringCloud简介

       åœ¨äº†è§£SpringCloud之前先了解一下微服务架构需要考量的核心关键点,如下图:

       å¯¹äºŽä»¥ä¸Šç­‰æ ¸å¿ƒå…³é”®ç‚¹çš„处理,不需要我们重复造车轮,SpringCloud已经帮我们集成了,它使用SpringBoot风格将一些比较成熟的微服务框架组合起来,屏蔽掉了复杂的配置和实现原理,为快速构建微服务架构的应用提供了一套基础设施工具和开发支持。

       SpringCloud所提供的核心功能包含:

       SpringCloud架构图

       SpringCloud子项目

       SpringCloud旗下的子项目大致可以分为两类:

       å¦‚下:

       1.SpringCloud与SpringBoot

       SpringBoot可以说是微服务架构的核心技术之一。通过在SpringBoot应用中添加SpringMVC依赖,就可以快速实现基于REST架构的服务接口,并且可以提供对HTTP标准动作的支持。而且SpringBoot默认提供JackJson序列化支持,可以让服务接口输入、输出支持JSON等。因此,当使用SpringCloud进行微服务架构开发时,使用SpringBoot是一条必经之路。

       2.SpringCloud与服务治理(Eureka)

       æœåŠ¡æ²»ç†æ˜¯SpringCloud的核心,在实现上其提供了两个选择,即Consul和Netflix的Eureka。

       Eureka提供了服务注册中心、服务发现客户端,以及注册服务的UI界面应用。

       åœ¨Eureka的实现中,节点之间相互平等,有部分注册中心“挂掉”也不会对整个应用造成影响,即使集群只剩一个节点存活,也可以正常地治理服务。即使所有服务注册节点都宕机,Eureka客户端中所缓存的服务实例列表信息,也可让服务消费者能够正常工作,从而保障微服务之间互相调用的健壮性和应用的弹性。

       3.SpringCloud与客户端负载均衡(Ribbon)

       Ribbon默认与Eureak进行无缝整合,当客户端启动的时候,从Eureka服务器中获取一份服务注册列表并维护在本地,当服务消费者需要调用服务时,Ribbon就会根据负载均衡策略选择一个合适的服务提供者实例并进行访问。

       SpringCloud通过集成Netflix的Feign项目,为开发者提供了声明式服务调用,从而简化了微服务之间的调用处理方式。并且默认Feign项目集成了Ribbon,使得声明式调用也支持客户端负载均衡功能。

       4.SpringCloud与微服务容错、降级(Hystrix)

       ä¸ºäº†ç»™å¾®æœåŠ¡æž¶æž„提供更大的弹性,在SpringCloud中,通过集成Netflix下子项目Hystrix,通过所提供的@HystrixCommand注解可以轻松为我们所开发的微服务提供容错、回退、降级等功能。此外,Hystrix也默认集成到Feign子项目中。

       Hystrix是根据“断路器”模式而创建。当Hystrix监控到某服务单元发生故障之后,就会进入服务熔断处理,并向调用方返回一个符合预期的服务降级处理(fallback),而不是长时间的等待或者抛出调用异常,从而保障服务调用方的线程不会被长时间、不必要地占用,避免故障在应用中的蔓延造成的雪崩效应。

       è€ŒHystrix的仪表盘项目(Dashboard)可以监控各个服务调用所消耗的时间、请求数、成功率等,通过这种近乎实时的监控和告警,可以及时发现系统中潜在问题并进行处理。

       5.SpringCloud与服务网关(Zuul)

       SpringCloud通过集成Netflix中的Zuul实现API服务网关功能,提供对请求的路由和过滤两个功能

       è·¯ç”±åŠŸèƒ½è´Ÿè´£å°†å¤–部请求转发到具体的微服务实例上,是实现外部访问统一入口的基础。

       è¿‡æ»¤å™¨åŠŸèƒ½åˆ™è´Ÿè´£å¯¹è¯·æ±‚的处理过程进行干预,是实现请求校验、服务聚合等功能的基础。

       é€šè¿‡Zuul,可以将细粒度的服务组合起来提供一个粗粒度的服务,所有请求都导入一个统一的入口,对外整个服务只需要暴露一个API接口,屏蔽了服务端的实现细节。通过Zuul的反向代理功能,可以实现路由寻址,将请求转发到后端的粗粒度服务上,并做一些通用的逻辑处理。此外,Zuul默认会与Eureka服务器进行整合,自动从Eureka服务器中获取所有注册的服务并进行路由映射,实现API服务网关自动配置。

       6.SpringCloud与消息中间件(Stream)

       SpringCloud为简化基于消息的开发,提供了Stream子项目,通过建立消息应用抽象层,构建了消息收发、分组消费和消息分片等功能处理,将业务应用中的消息收发与具体消息中间件进行解耦,使微服务应用开发中可以非常方便地与Kafka和RabbitMQ等消息中间件进行集成。

       SpringCloudBus基于Stream进行扩展,可以作为微服务之间的事件、消息总线,用于服务集群中状态变化的传播。

       æ¯”如SpringCloudConfig借助Bus,可以实现配置的动态刷新处理。

       7.SpringCloud与分布式配置中心(Config)

       é’ˆå¯¹å¾®æœåŠ¡æž¶æž„下的配置文件管理需求,SpringCloud提供了一个Config子项目。SpringCloudConfig具有中心化、版本控制、支持动态更新和语言独立等特性。

       åœ¨Config子项目中将微服务应用分为两种角色:配置服务器(ConfigServer)和配置客户端(ConfigClient)。使用配置服务器集中地管理所有配置属性文件,配置服务中心可以将配置属性文件存储到Git、SVN等具有版本管理仓库中,也可以存放在文件系统中。默认采用Git的方式进行存储,因此可以很容易地对配置文件进行修改,并实现版本控制。

       8.SpringCloud与微服务链路追踪(Sleuth)

       SpringCloud中的Sleuth子项目为开发者提供了微服务之间调用的链路追踪。

       Sleuth核心思想就是通过一个全局的ID将分布在各微服务服务节点上的请求处理串联起来,还原了调用关系,并借助数据埋点,实现对微服务调用链路上的性能数据的采集。

       å› æ­¤ï¼Œé€šè¿‡Sleuth可以很清楚地了解到一个用户请求经过了哪些服务、每个服务处理花费了多长时间,从而可以对用户的请求进行分析。此外,通过将采集的数据发送给Zipkin进行存储、统计和分析,从而可以实现可视化的分析和展示,帮助开发者对微服务实施优化处理。

       9.SpringCloud与微服务安全(Security)

       SpringCloudSecurity为我们提供了一个认证和鉴权的安全框架,实现了资源授权、令牌管理等功能,同时结合Zuul可以将认证信息在微服务调用过程中直接传递,简化了我们进行安全管控的开发。

       SpringCloudSecurity默认支持OAuth2.0认证协议,因此单点登录也可以非常容易实现,并且OAuth2.0所生成的令牌可以使用JWT的方式,进一步简化了微服务中的安全管理。

       .SpringCloud的其他子项目

       è‡ªå®šä¹‰springcloud-gateway熔断处理

       ä¸€ã€åœºæ™¯

       ä½¿ç”¨springcloudgateway后,有了熔断,问题也就随之而来,服务间调用有了hystrix可以及时的排除坏接口、坏服务的问题,对系统很有帮助。但是!不是所有的接口都是极短时间内完成的,不是所有的接口都可以设置一样的超时时间的!

       é‚£ä¹ˆæˆ‘们面临一个问题,那就是百分之的接口都可以在1s内完美完成,但是就是那几个特殊接口,需要十几秒,几十秒的等待时间,而默认熔断的时间又只有一个。

       äºŒã€åˆ†æž

       åœ¨å‰é¢springcloudgateway源码解析之请求篇中我们知道请求会经过一些列的过滤器(GatewayFilter),而springcloudgateway的降级熔断处理就是由一个特殊的过滤器来处理的,通过源码分析我们关注到HystrixGatewayFilterFactory这个类,这个类的作用就是生产GatewayFilter用的,我们看下它的实现

       å¯ä»¥çœ‹åˆ°çº¢æ¡†å¤„最后构建了一个匿名的GatewayFilter对象返回,这个对象在接口请求过程中会被加载到过滤器链条中,仔细看到这里是创建了一个RouteHystrixCommand这个命令对象,最终调用command.toObservable()方法处理请求,如果超时熔断调用resumeWithFallback方法

       é€šè¿‡æºç åˆ†æžgateway在路由时可以指定HystrixCommandKey,并且对HystrixCommandKey设置超时时间

       ä¸‰ã€æ–¹æ¡ˆ

       çŸ¥é“网关熔断的原理就好办了,自定义熔断的过滤器配置到接口请求过程中,由过滤器来读取接口熔断配置并构建HystrixObservableCommand处理请求。

       è‡ªå®šä¹‰ä¸€ä¸ªç±»XXXGatewayFilterFactory继承AbstractGatewayFilterFactory,将api和对应的timeout配置化,来实现细化到具体接口的熔断配置,具体实现如下:

       packageorg.unicorn.framework.gateway.filter;

       importcn.hutool.core.collection.CollectionUtil;

       importcom.netflix.hystrix.HystrixCommandGroupKey;

       importcom.netflix.hystrix.HystrixCommandKey;

       importcom.netflix.hystrix.HystrixCommandProperties;

       importcom.netflix.hystrix.HystrixObservableCommand;

       importcom.netflix.hystrix.exception.HystrixRuntimeException;

       importorg.springframework.beans.factory.ObjectProvider;

       importorg.springframework.cloud.gateway.filter.GatewayFilter;

       importorg.springframework.cloud.gateway.filter.GatewayFilterChain;

       importorg.springframework.cloud.gateway.filter.factory.AbstractGatewayFilterFactory;

       importorg.springframework.cloud.gateway.support.ServerWebExchangeUtils;

       importorg.springframework.cloud.gateway.support.TimeoutException;

       importorg.springframework.core.annotation.AnnotatedElementUtils;

       importorg.springframework.mand;

       if(CollectionUtil.isNotEmpty(apiTimeoutList)){

       //request匹配属于那种模式

       ApiHystrixTimeoutapiHystrixTimeout=getApiHystrixTimeout(apiTimeoutList,path);

       command=newUnicornRouteHystrixCommand(config.getFallbackUri(),exchange,chain,initSetter(apiHystrixTimeout.getApiPattern(),apiHystrixTimeout.getTimeout()));

       }else{

       command=newUnicornRouteHystrixCommand(config.getFallbackUri(),exchange,chain,initSetter(serviceId(exchange),null));

       }

       returncommand;

       }

       /

**

       *@paramapiTimeoutList

       *@parampath

       *@return

       */

       privateApiHystrixTimeoutgetApiHystrixTimeout(ListapiTimeoutList,Stringpath){

       for(ApiHystrixTimeoutapiTimeoutPattern:apiTimeoutList){

       if(this.antPathMatcher.match(apiTimeoutPattern.getApiPattern(),path)){

       returnapiTimeoutPattern;

       }

       }

       ApiHystrixTimeoutapiHystrixTimeout=newApiHystrixTimeout();

       apiHystrixTimeout.setApiPattern("default");

       apiHystrixTimeout.timeout=null;

       returnapiHystrixTimeout;

       }

       @Override

       publicGatewayFilterapply(Configconfig){

       return(exchange,chain)-{

       UnicornRouteHystrixCommandcommand=initUnicornRouteHystrixCommand(exchange,chain,config);

       returnMono.create(s-{

       Subscriptionsub=command.toObservable().subscribe(s::success,s::error,s::success);

       s.onCancel(sub::unsubscribe);

       }).onErrorResume((Function)throwable-{

       if(throwableinstanceofHystrixRuntimeException){

       HystrixRuntimeExceptione=(HystrixRuntimeException)throwable;

       HystrixRuntimeException.FailureTypefailureType=e.getFailureType();

       switch(failureType){

       caseTIMEOUT:

       returnMono.error(newTimeoutException());

       caseCOMMAND_EXCEPTION:{

       Throwablecause=e.getCause();

       if(causeinstanceofResponseStatusException||AnnotatedElementUtils

       .findMergedAnnotation(cause.getClass(),ResponseStatus.class)!=null){

       returnMono.error(cause);

       }

       }

       default:

       break;

       }

       }

Hystrix技术指南(7)故障切换的运作流程原理分析(含源码)

       目前对于一些非核心操作,如增减库存后保存操作日志发送异步消息时(具体业务流程),码使一旦出现MQ服务异常时,源用会导致接口响应超时,码使因此可以考虑对非核心操作引入服务降级、源用服务隔离。码使智能推广系统源码

       Hystrix说明

       Hystrix是源用Netflix开源的一个容灾框架,解决当外部依赖故障时拖垮业务系统、码使甚至引起雪崩的源用问题。

       为什么需要Hystrix?码使Hystrix设计理念

       想要知道如何使用,必须先明白其核心设计理念,源用Hystrix基于命令模式,码使通过UML图先直观的源用python源码安装命令认识一下这一设计模式。

       Hystrix如何解决依赖隔离Hystrix流程结构解析

       流程说明:

       以下四种情况将触发getFallback调用:

       熔断器:Circuit Breaker

       每个熔断器默认维护个bucket,码使每秒一个bucket,源用每个bucket记录成功,失败,超时,拒绝的状态,默认错误超过%且秒内超过个请求进行中断短路。

       Hystrix隔离分析

       Hystrix隔离方式采用线程/信号的php代刷源码方式,通过隔离限制依赖的并发量和阻塞扩散.

       线程隔离实际案例:

       Netflix公司内部认为线程隔离开销足够小,不会造成重大的成本或性能的影响。Netflix 内部API 每天亿的HystrixCommand依赖请求使用线程隔,每个应用大约多个线程池,每个线程池大约5-个线程。

       信号隔离

       信号隔离也可以用于限制并发访问,防止阻塞扩散,tomcat部署discuz源码 与线程隔离最大不同在于执行依赖代码的线程依然是请求线程(该线程需要通过信号申请),如果客户端是可信的且可以快速返回,可以使用信号隔离替换线程隔离,降低开销。 信号量的大小可以动态调整, 线程池大小不可以。

       线程隔离与信号隔离区别如下图:

       fallback故障切换降级机制

       有兴趣的小伙伴可以看看: 官方参考文档

       源码分析

       hystrix-core-1.5.-sources.jar!/com/netflix/hystrix/AbstractCommand.java

       executeCommandAndObserve

       使用Observable的onErrorResumeNext,里头调用了handleFallback,handleFallback中区分不同的异常来调用不同的fallback。

       applyHystrixSemanticsViaFallback方法

       hystrix-core-1.5.-sources.jar!/com/netflix/hystrix/AbstractCommand.java

       hystrix-core-1.5.-sources.jar!/com/netflix/hystrix/AbstractCommand.java

       针对每个commandKey获取或创建TryableSemaphoreActual

       fallback源码分析小结

       hystrix的喊单平台源码fallback主要分为5种类型:

       获取以上资源请访问开源项目 点击跳转

Spring Boot 项目配合Hystrix 实现全局RestController超时熔断(api超过秒返回timeout)

       为了在Spring Boot项目中实现全局RestController的超时熔断,当API调用超过秒时返回timeout,我们需要寻找一种更高效的方法,避免手动为上百个控制器添加@HystrixCommand注解,这将是一项繁重的任务。起初,我尝试使用切面编程(AspectJ)包裹RestController,配置@HystrixCommand,但这似乎与HystrixCommand的特性产生了冲突。通过深入Hystrix源码分析和实例化HystrixCommand,我成功实现了全局的超时熔断策略,无需每个API都单独标注。

       实现的关键在于在pom文件中添加适当的Hystrix依赖,并确保返回值使用ResponseEntity以控制响应码。对于非ResponseEntity类型的返回值,通过优化处理,可以避免超时后返回的意外情况。这个过程虽然注解方式简洁,但控制不当可能引发问题。在遇到注解失效或效果不佳时,通过创建私有实例进行管理通常更易于调试和问题定位。

       Spring Boot的starter虽然提供了快速搭建项目的便利,但在精细化控制上可能面临挑战。因此,对于这类场景,注解的便利性和实例化管理的灵活性是需要权衡的。

Hystrix介绍

        对Hystrix耳闻已久,最近刚好想在项目中使用这个神器就顺带研究了一把,很多细节来不及深入研究只能把宏观上的各个概念讲解一下,这个介绍的素材大都来自github上的Hystrix官网。

         所谓一图胜千言,但凡能够用图片来表示而且能够表示清楚的,就不多用文字描述了,看图肯定比看文字要让人来的更爽一些。当然我还是非常建议去github上的Hystrix官方wiki去看原汁原味的文档,在参考文献部分已经给出了链接。

         最后提一点,就是在Hystrix的实现当中大量使用了RxJava的开源包的技术,这个技术之前没怎么研究过,所以后面的很多源码的分析更多侧重过程分析而不会深入细节,有兴趣的可以自己深入研究下,我就准备哪天得空好好去研究一下,毕竟RxJava这个东西号称是一个通过使用可观察序列来编写异步和基于事件的程序的库。

        hystrix的出现即为解决雪崩效应,它通过四个方面的机制来解决这个问题

        Hystrix的隔离主要是为每个依赖组件提供一个隔离的线程环境,提供两种模式的隔离:

        Hystrix的熔断器其实可以理解为就是一个统计中心,统计一定时间窗口内访问次数,成功次数,失败次数等数值判定是否发生熔断。发生电路熔断的过程如下:

       hystrix工作原理-英文版

        hystrix工作原理-中文版

        关于RxJava的详解

更多内容请点击【百科】专栏