欢迎访问皮皮网官网
皮皮网

【php源码听书】【华硕固件源码】【骑士影院源码】leveldb源码分析

时间:2024-11-20 17:33:38 分类:热点 来源:gis开发源码

1.LevelDB 源码剖析1 -- 原理
2.FREE SOLO - 自己动手实现Raft - 15 - leveldb源码分析与调试-1
3.FREE SOLO - 自己动手实现Raft - 16 - leveldb源码分析与调试-2
4.leveldb之数据存储结构
5.深入源码解析LevelDB

leveldb源码分析

LevelDB 源码剖析1 -- 原理

       LSM-Tree,码分全称Log-Structured Merge Tree,码分被广泛应用于数据库系统中,码分如HBase、码分Cassandra、码分LevelDB和SQLite,码分php源码听书甚至MongoDB 3.0也引入了可选的码分LSM-Tree引擎。这种数据结构旨在提供优于传统B+树或ISAM(Indexed Sequential Access Method)方法的码分写入吞吐量,通过避免随机的码分本地更新操作实现。

       LSM-Tree的码分核心思想基于磁盘性能的特性:随机访问速度远低于顺序访问,三个数量级的码分差距。因此,码分简单地将数据附加至文件尾部(日志或堆文件策略)可以提供接近理论极限的码分写入吞吐量。尽管这种方法足够简单且性能良好,码分但它有一个明显的码分缺点:从日志中随机读取数据需要花费更多时间,因为需要按时间顺序从近及远扫描日志直至找到所需键。因此,日志策略仅适用于简单的数据访问场景。

       为了应对更复杂的读取需求,如基于键的搜索、范围搜索等,LSM-Tree引入了一种改进策略,通过创建一系列排序文件来存储数据,每次写入都会生成一个新的文件,同时保留了日志系统优秀的写性能。在读取数据时,系统会检查所有文件,并定期合并文件以减少文件数量,从而提高读取性能。华硕固件源码

       在LSM-Tree的基本算法中,写入数据按照顺序保存到一组较小的排序文件中。每个文件代表了一段时间内的数据变更,且在写入前进行排序。内存表作为写入数据的缓冲区,用于保持键值的顺序。当内存表填满后,已排序的数据刷新到磁盘上的新文件。系统会周期性地执行合并操作,选择一些文件进行合并,以减少文件数量和删除冗余数据,同时维持读取性能。

       读取数据时,系统首先检查内存缓冲区,若未找到目标键,则以反向时间顺序检查各个文件,直到找到目标键。合并操作通过定期将文件合并在一起,控制文件数量和读取性能,即使文件数量增加,读取性能仍可保持在可接受范围内。通过使用内存中保存的页索引,可以优化读取操作,尤其是在文件末尾保留索引块,这通常比直接二进制搜索更高效。

       为了减少读取操作时访问的文件数量,新实现采用了分级合并(Leveled Compaction),即基于级别的骑士影院源码文件合并策略。这不仅减少了最坏情况下需要访问的文件数量,还减少了单次压缩的副作用,同时提供更好的读取性能。分级合并与基本合并的主要区别在于文件合并的策略,这使得工作负载扩展合并的影响更高效,同时减少总空间需求。

FREE SOLO - 自己动手实现Raft - - leveldb源码分析与调试-1

       leveldb 是由 Google 基础架构工程师 Jeff Dean 所设计的,是一种高效、可靠的键值对存储系统。它基于LSM(Log-Structured Merge)存储引擎,代码简洁精炼,非常适合深入学习与理解。leveldb 不仅可以作为一个简单的键值对引擎使用,而且内部组件如LRU Cache也具有独立的实用性,还能在此基础上封装出其他操作接口,例如vraft中的raftlog和metadata等。

       通过理解leveldb,能够对后续学习如rocksdb等更高级的数据库引擎提供坚实基础。本文旨在从状态机的角度解析leveldb,帮助读者深入理解其内部工作原理。

       在leveldb中,关键状态包括但不限于内存、磁盘状态以及LRU Cache状态。内存数据与磁盘数据的交互是leveldb的核心,用户的键值对数据通过日志写入到memtable,然后通过immutable memtable最终到达磁盘上的sorted table文件,这些文件按照级别(level)从0到6逐级存储。通过在关键时刻添加ToJson函数,新化深圳源码可以记录这些状态的变化,便于分析。

       LRU Cache在leveldb中的实现同样值得深入研究。它作为一种缓存机制,有助于优化数据访问效率。通过在LRU Cache中添加ToJson函数并打印状态,可以直观地观察其内部结构和状态的动态变化。

       为了更好地理解leveldb,本文将重点分析关键数据结构,并通过观察不同动作导致的状态变化,来深入探究leveldb的内部机制。在后续文章中,将详细展示leveldb内部状态的转换过程,以帮助读者掌握其核心工作原理。

FREE SOLO - 自己动手实现Raft - - leveldb源码分析与调试-2

       本文聚焦于leveldb的写入机制,包括log的写入与memtable的写入过程。在深入分析之前,让我们回顾leveldb的核心数据结构,这将为后续的探讨提供直观的参考。

       数据写入流程主要包括两个阶段:首先,将数据写入log,紧接着将数据写入memtable以供查询。

       在log的写入过程中,数据经由一系列封装,最终通过调用log::Writer::AddRecord实现写入。在这一过程中,数据通过DBImpl::Put和DB::Put进行封装,最终由DBImpl::Write调用实现。jeeplus ani源码

       对于memtable的写入,数据同样经历DBImpl::Put和DB::Put的封装,随后由DBImpl::Write和MemTableInserter::Put进行处理,最后调用MemTable::Add完成写入。这一系列操作确保了数据的高效存储与检索。

       数据读取方面,主要依赖于DBImpl::Get调用,通过MemTable::Get和SkipList::FindGreaterOrEqual操作在SkipList中进行搜索,实现从memtable中读取数据。同时,数据也可从sorted table中获取。

       总结整个流程,本文主要梳理了数据写入与读取的调用栈,以及memtable与log在leveldb中的角色。下一次,我们将深入探讨大量数据写入后,内存与磁盘中数据状态的变化,以进一步理解leveldb的高效与可靠。

       期待下次的分享,敬请关注!

leveldb之数据存储结构

       leveldb中的数据存储结构设计巧妙,尽管在源码中编码和反编码较为复杂,但理解时可以将其当作黑盒子。本文主要讨论几个关键组件:Slice、Varint/、InternalKey、Comparator、SSTable、DataBlock、IndexBlock、FilterBlock、MetaIndexBlock以及Log和WriteBatch。

       Slice是一个轻量级的数据结构,类似Go语言的切片,用于方便传递和引用数据子串,尤其在处理C++标准库中的std::string时,Slice更轻便,不需复制子串。

       Varint/是变长编码,用于节省存储空间,如位整型,通过MSB和后续7位表示数据,最长可编码到5字节。这种编码方式使得数字存储更加紧凑。

       InternalKey是存储用户数据的关键,由user_key、sequence和type组成,sequence用于版本控制和数据合并,type区分值类型和删除标记。删除时,leveldb通过日志追加而非直接修改,确保数据一致性。

       Comparator接口用于自定义key的比较逻辑,而InternalKeyComparator结合user_comparator,通过用户键和序列进行排序,保证新数据在旧数据的前面。

       SSTable由DataBlock、MetaIndexBlock和IndexBlock组成,DataBlock采用前缀压缩和重启点设计,提高了空间效率。IndexBlock则用于记录DataBlock的映射,采用跳点策略来压缩key。

       FilterBlock在构建Block的同时生成BloomFilter,用于快速过滤查找。MetaIndexBlock存储元信息到MetaBlock的映射。

       Footer用于文件校验和解析,包含索引和元数据信息。MemTable使用skiplist结构,支持高效查找,通过墓碑标记删除,保持数据一致性。

       Log负责持久化数据,避免内存丢失。WriteBatch用于批量操作,保证原子性,并进行序列化,便于数据恢复。

深入源码解析LevelDB

       深入源码解析LevelDB

       LevelDB总体架构中,sstable文件的生成过程遵循一系列精心设计的步骤。首先,遍历immutable memtable中的key-value对,这些对被写入data_block,每当data_block达到特定大小,构造一个额外的key-value对并写入index_block。在这里,key为data_block的最大key,value为该data_block在sstable中的偏移量和大小。同时,构造filter_block,默认使用bloom filter,用于判断查找的key是否存在于data_block中,显著提升读取性能。meta_index_block随后生成,存储所有filter_block在sstable中的偏移和大小,此策略允许在将来支持生成多个filter_block,进一步提升读取性能。meta_index_block和index_block的偏移和大小保存在sstable的脚注footer中。

       sstable中的block结构遵循一致的模式,包括data_block、index_block和meta_index_block。为提高空间效率,数据按照key的字典顺序存储,采用前缀压缩方法处理。查找某一key时,必须从第一个key开始遍历才能恢复,因此每间隔一定数量(block_restart_interval)的key-value,全量存储一个key,并设置一个restart point。每个block被划分为多个相邻的key-value组成的集合,进行前缀压缩,并在数据区后存储起始位置的偏移。每一个restart都指向一个前缀压缩集合的起始点的偏移位置。最后一个位存储restart数组的大小,表示该block中包含多少个前缀压缩集合。

       filter_block在写入data_block时同步存储,当一个new data_block完成,根据data_block偏移生成一份bit位图存入filter_block,并清空key集合,重新开始存储下一份key集合。

       写入流程涉及日志记录,包括db的sequence number、本次记录中的操作个数及操作的key-value键值对。WriteBatch的batch_data包含多个键值对,leveldb支持延迟写和停止写策略,导致写队列可能堆积多个WriteBatch。为了优化性能,写入时会合并多个WriteBatch的batch_data。日志文件只记录写入memtable中的key-value,每次申请新memtable时也生成新日志文件。

       在写入日志时,对日志文件进行划分为多个K的文件块,每次读写以这样的每K为单位。每次写入的日志记录可能占用1个或多个文件块,因此日志记录块分为Full、First、Middle、Last四种类型,读取时需要拼接。

       读取流程从sstable的层级结构开始,0层文件特别,可能存在key重合,因此需要遍历与查找key有重叠的所有文件,文件编号大的优先查找,因为存储最新数据。非0层文件,一层中的文件之间key不重合,利用版本信息中的元数据进行二分搜索快速定位,仅需查找一个sstable文件。

       LevelDB的sstable文件生成与合并管理版本,通过读取log文件恢复memtable,仅读取文件编号大于等于min_log的日志文件,然后从日志文件中读取key-value键值对。

       LevelDB的LruCache机制分为table cache和block cache,底层实现为个shard的LruCache。table cache缓存sstable的索引数据,类似于文件系统对inode的缓存;block cache缓存block数据,类似于Linux中的page cache。table cache默认大小为,实际缓存的是个sstable文件的索引信息。block cache默认缓存8M字节的block数据。LruCache底层实现包含两个双向链表和一个哈希表,用于管理缓存数据。

       深入了解LevelDB的源码解析,有助于优化数据库性能和理解其高效数据存储机制。

copyright © 2016 powered by 皮皮网   sitemap