1.Unity3D MMORPG核心技术:AOI算法源码分析与详解
2.Unity源码学习遮罩:Mask与Mask2D
3.URP(渲染管线定义,源码y源源码解析)
4.UGUI源码阅读之Mask
5.从零开始的源码y源UnityGameFramework使用教程(壹)
6.Unity开源项目精选AssetStudio:提取Unity游戏的资源
Unity3D MMORPG核心技术:AOI算法源码分析与详解
Unity3D是一款跨平台的游戏引擎,在游戏开发领域应用广泛。源码y源MMORPG(大型多人在线角色扮演游戏)作为游戏开发的源码y源重要领域,在Unity3D中也得到广泛应用。源码y源玩家之间的源码y源kd异动源码交互是游戏开发中一个重要问题。如何高效处理这些交互?AOI(Area of Interest)算法提供了一个有效解决方案。源码y源 AOI算法是源码y源一种空间索引算法,能够依据玩家位置快速确定周围玩家,源码y源从而提高交互效率。源码y源实现AOI算法通常采用Quadtree(四叉树)或Octree(八叉树),源码y源将空间划分为多个区域,源码y源每个区域可包含若干玩家。源码y源 以下为AOI算法实现方法和代码解释。源码y源 **实现方法**将空间划分为多个区域(Quadtree或Octree)。源码y源
玩家移动、加入或离开时,更新对应区域。
玩家查找周围玩家时,遍历相关区域。
**代码实现**使用C#语言实现Quadtree。
编写函数,实现玩家进入/离开、移动和查找玩家。
通过上述方法和代码,AOI算法可以在MMORPG中高效处理玩家交互,优化游戏性能和玩家体验。404 html源码Unity源码学习遮罩:Mask与Mask2D
Unity源码学习遮罩详解:Mask与Mask2D UGUI裁切功能主要有两种方式:Mask和Mask2D。它们各自有独特的原理和适用场景。1. Mask原理与实现
Mask利用IMaskable和IMaterialModifier功能,通过指定一张裁切图,如圆形,限定子元素的显示区域。GPU通过StencilBuffer(一个用于保存像素标记的缓存)来控制渲染,当子元素像素位于Mask指定区域时,才会被渲染。 StencilBuffer像一个画板,每个像素有一个1字节的内存区域,记录是否被遮盖。当多个UI元素叠加时,通过stencil buffer传递信息,实现精确裁切。2. Mask2D原理
RectMask2D则基于IClippable接口,其裁剪基于RectTransform的大小。在C#层,它找出所有RectMask2D的交集并设置剪裁区域,然后Shader层依据这些区域判断像素是否在内,不满足则透明度设为0。 RectMask2D的性能优化在于无需依赖Image组件,直接使用RectTransform的大小作为裁剪区域。3. 性能区别
Mask需要Image组件,裁剪区域受限于Image,而RectMask2D独立于Image,景点通 源码裁剪灵活。因此,Mask2D在不需要复杂裁剪时更高效。 总结:虽然Mask和Mask2D各有优势,选择哪种遮罩取决于具体需求,合理使用能提高性能和用户体验。URP(渲染管线定义,源码解析)
本文详细解析了Unity渲染管线(URP)的内部工作原理和源码结构,深入探讨了URP如何实现高效的渲染流程和丰富的渲染特性。首先,我们介绍了UnityEngine.CoreModule和UnityEngine.Rendering.Universal命名空间的基本概念,理解了它们在URP中的角色。然后,通过查找CreatePipeline方法和分析UniversalRenderPipeline实例的内部结构,揭示了URP实例化和初始化的过程。
在渲染管线实例阶段,我们聚焦于UniversalRenderPipeline实例的Render方法,以及它在每帧执行的任务,特别是Profiling器的使用,这为性能优化提供了重要的工具。接着,文章深入探讨了ScriptableRenderer类,它实现了渲染策略,包括剔除、照明以及效果支持的描述,展示了其在渲染过程中如何与摄像机交互。java foreach源码
对于渲染过程的细节,文章详细说明了从设置图形参数、执行剔除、初始化光照、执行渲染Pass到后处理阶段的流程。特别关注了渲染Pass的执行,以及如何通过自定义RenderPass来扩展URP的功能。在渲染结束后,文章还介绍了如何使用ProfilingScope进行性能分析,为优化渲染管线提供了实用的工具。
综上所述,本文以深入的技术细节,全面解析了Unity URP渲染管线的内部机制,旨在帮助开发者更好地理解URP的实现原理,进而优化其应用中的渲染性能。
UGUI源码阅读之Mask
Mask主要基于模版测试来进行裁剪,因此先来了解一下unity中的模版测试。
Unity Shader中的模版测试配置代码大致如上
模版测试的伪代码大概如上
传统的渲染管线中,模版测试和深度测试一般发生在片元着色器(Fragment Shader)之后,但是现在又出现了Early Fragment Test,可以在片元着色器之前进行。
Mask直接继承了UIBehaviour类,同时继承了ICanvasRaycastFilter和IMaterialModifier接口。
Mask主要通过GetModifiedMaterial修改graphic的Material。大致流程:
1.获取当前Mask的层stencilDepth
2.StencilMaterial.Add修改baseMaterial的模板测试相关配置,并将其缓存
3.StencilMaterial.Add设置一个unmaskMaterial,色情站 源码用于最后将模板值还原
MaskableGraphic通过MaskUtilities.GetStencilDepth计算父节点的Mask层数,然后StencilMaterial.Add修改模板测试的配置。
通过Frame Debugger看看具体每个batch都做了什么。先看第一个,是Mask1的m_MaskMaterial,关注Stencil相关的数值,白色圆内的stencil buffer的值设置为1
这个是Mask2的m_MaskMaterial,根据stencil的计算公式,Ref & ReadMask=1,Comp=Equal,只有stencil buffer & ReadMask=1的像素可以通过模板测试,即第一个白色圆内的像素,然后Pass=Replace,会将通过的像素写入模板值(Ref & WriteMask=3),即两圆相交部分模板值为3
这个是RawImage的Material,只有模板值等于3的像素可以通过模板测试,所以只有两个圆相交的部分可以写入buffer,其他部分舍弃,通过或者失败都不改变模板值
这是Mask2的unmaskMaterial,将两个圆相交部分的模板值设置为1,也就是还原Mask2之前的stencil buffer
这是Mask1的unmaskMaterial,将第一个圆内的模板值设置为0,还有成最初的stencil buffer
可以看到Mask会产生比较严重的overdraw。
2.drawcall和合批
每添加一个mask,一般会增加2个drawcall(加上mask会阻断mask外和mask内的合批造成的额外drawcall),一个用于设置遮罩用的stencil buffer,一个用于还原stencil buffer。
如图,同一个Mask下放置两个使用相同的RawImage,通过Profiler可以看到两个RawImage可以进行合批
如图,两个RawImage使用相同的,它们处于不同的Mask之下,但是只要m_StencilValue相等,两个RawImage还是可以进行合批。同时可以看到Mask1和Mask1 (1),Mask2和Mask2 (1)也进行了合批,说明stencilDepth相等的Mask符合合批规则也可以进行合批。
StencilMaterial.Add会将修改后的材质球缓存在m_List中,因此调用StencilMaterial.Add在相同参数情况下将获得同一个材质球。
从零开始的UnityGameFramework使用教程(壹)
从零开始UnityGameFramework教程:入门篇
本文将带你通过一步步操作,从零开始在Unity环境中配置和使用UnityGameFramework。不涉及框架内部细节,专注于实际应用。
首先,如果你遇到错误或不清晰的地方,欢迎指正,我会及时进行修正。我们从替换源码开始,通过E大GitHub获取源码,需删除原有GameFramework.dll并添加新创建的程序集定义。
接下来,模仿StarForce文件结构,复制GameEntry类并创建启动场景。组件获取就通过GameEntry.XXX来实现。数据表处理涉及原始样式、生成工具和资源优先级,需要将数据表文件和生成的代码文件放在相应位置。
流程组件加载中,我们首先加载一个场景,通过在Scripts/Procedure下的多个类中重写方法来控制流程。配置UI组件包括创建Canvas、菜单预制体和通用对话框。UI组件中的事件处理和音频配置也在这一阶段完成。
本地化组件在预加载流程中添加字典加载,更换Localization Helper并设置字体。声音组件的配置和背景音乐的使用,使游戏声音功能生效。最后,加载第一个实体,包括实体数据、逻辑分离,以及配置实体组件和组别。
打包发布前,需要在Editor文件夹设置GameFrameworkConfigs和资源管理。按照官方文档设置资源列表,打包流程并确保所有资源已正确配置。最后,通过添加闪屏和初始化资源流程,确保在运行时与编辑器模式相同。
通过以上步骤,你将逐步掌握UnityGameFramework的使用,为你的游戏开发打下坚实基础。
Unity开源项目精选AssetStudio:提取Unity游戏的资源
大智,你的技术探路者,带您探索Unity开源项目之AssetStudio,一个用于挖掘、提取及导出Unity游戏资源的利器。
AssetStudio,源码地址:github.com/Perfare/Asse...
这个工具专为Unity游戏开发者设计,帮助您轻松获取游戏资源。无论您是寻求灵感,还是希望深入研究游戏内部结构,AssetStudio都是理想选择。
使用AssetStudio,您能够探索、提取和导出asset和assetbundle,解锁Unity游戏资源的秘密。这个开源项目为开发者提供了便利,让您能够快速、高效地进行资源管理。
我是大智,技术探路者,下期再见。别忘了点赞、收藏,与更多开发者共享这份宝贵资源。
unity urp源码学习一(渲染流程)
sprt的一些基础:
绘制出物体的关键代码涉及设置shader标签(例如"LightMode" = "CustomLit"),以确保管线能够获取正确的shader并绘制物体。排序设置(sortingSettings)管理渲染顺序,如不透明物体从前至后排序,透明物体从后至前,以减少过绘制。逐物体数据的启用、动态合批和gpuinstance支持,以及主光源索引等配置均在此进行调整。
过滤规则(filteringSettings)允许选择性绘制cullingResults中的几何体,依据RenderQueue和LayerMask等条件进行过滤。
提交渲染命令是关键步骤,无论使用context还是commandbuffer,调用完毕后必须执行提交操作。例如,context.DrawRenderers()用于绘制场景中的网格体,本质上是执行commandbuffer以渲染网格体。
sprt管线的基本流程涉及context的命令贯穿整个渲染流程。例如,首次调用渲染不透明物体,随后可能调用渲染半透明物体、天空盒、特定层渲染等。流程大致如下:
多相机情况也通过单个context实现渲染。
urp渲染流程概览:
渲染流程始于遍历相机,如果是游戏相机,则调用RenderCameraStack函数。此函数区分base相机和Overlay相机:base相机遍历渲染自身及其挂载的Overlay相机,并将Overlay内容覆盖到base相机上;Overlay相机仅返回,不进行渲染操作。
RenderCameraStack函数接受CameraData参数,其中包含各种pass信息。添加pass到m_ActiveRenderPassQueue队列是关键步骤,各种pass类实例由此添加至队列。
以DrawObjectsPass为例,其渲染流程在UniversialRenderer.cs中实现。首先在Setup函数中将pass添加到队列,执行时,执行队列内的pass,并按顺序提交渲染操作。