皮皮网
皮皮网

【手机招聘系统源码】【绘制源码成品图片】【招财小猫视频源码】双向gru源码

时间:2025-01-07 06:04:26 来源:盗u源码如何盗u

1.openpilot-deep-dive源码解析(1)
2.(论文加源码)基于deap的四分类脑电情绪识别(一维CNN+LSTM和一维CNN+GRU
3.序列化推荐中的GRU与Transformer源码解析之一
4.本科生学深度学习一最简单的LSTM讲解,多图展示,源码实践,建议收藏

双向gru源码

openpilot-deep-dive源码解析(1)

       文章内容涉及openpilot的路径规划,具体解析如下:

       首先,导入所需的手机招聘系统源码数据集、模型、loss函数以及各类公有库,如Comma2kSequenceDataset、MultipleTrajectoryPredictionLoss、SequencePlanningNetwork等。这是进行训练的基础,确保所有工具都已准备好。

       接着,对训练参数进行配置,包括dist_sampler_params。关键参数包含:

       num_replicas:进程数,等于训练时的绘制源码成品图片世界大小。

       rank:当前卡的ID。

       persistent_workers:设置为True,确保数据集在被遍历一次后不被销毁,以保持持续使用。

       prefetch_factor:设置为2,预装载数据量,默认值是2*num_workers批量大小。

       使用DistributedSampler和DataLoader进行数据加载。

       模型的构建包括模型本身、优化器、学习率调度器,以及GRU隐状态的初始化。

       分布式训练涉及DDP相关代码,实现初始化、训练和销毁。

       最后,主训练流程开始,招财小猫视频源码参考相关文档或代码进行执行。

(论文加源码)基于deap的四分类脑电情绪识别(一维CNN+LSTM和一维CNN+GRU

       研究介绍

       本文旨在探讨脑电情绪分类方法,并提出使用一维卷积神经网络(CNN-1D)与循环神经网络(RNN)的组合模型,具体实现为GRU和LSTM,解决四分类问题。所用数据集为DEAP,实验结果显示两种模型在分类准确性上表现良好,1DCNN-GRU为.3%,1DCNN-LSTM为.8%。

       方法与实验

       研究中,数据预处理包含下采样、带通滤波、去除EOG伪影,将数据集分为四个类别:HVHA、HVLA、LVHA、LVLA,比亚迪软件源码在哪基于效价和唤醒值。选取个通道进行处理,提高训练精度,减少验证损失。数据预处理包括z分数标准化与最小-最大缩放,以防止过拟合,提高精度。实验使用名受试者的所有预处理DEAP数据集,以::比例划分训练、验证与测试集。

       模型结构

       采用1D-CNN与GRU或LSTM的混合模型。1D-CNN包括卷积层、最大池层、GRU或LSTM层、展平层、密集层,最终为4个单元的黑猫引擎源码下载密集层,激活函数为softmax。训练参数分别为.和.。实验结果展示两种模型的准确性和损失值,1DCNN-LSTM模型表现更优。

       实验结果与分析

       实验结果显示1DCNN-LSTM模型在训练、验证和测试集上的准确率分别为.8%、.9%、.9%,损失分别为6.7%、0.1%、0.1%,显著优于1DCNN-GRU模型。混淆矩阵显示预测值与实际值差异小,F1分数和召回值表明模型质量高。

       结论与未来工作

       本文提出了一种结合1D-CNN与GRU或LSTM的模型,用于在DEAP数据集上的情绪分类任务。两种模型均能高效地识别四种情绪状态,1DCNN-LSTM表现更优。模型的优点在于简单性,无需大量信号预处理。未来工作将包括在其他数据集上的进一步评估,提高模型鲁棒性,以及实施k-折叠交叉验证以更准确估计性能。

序列化推荐中的GRU与Transformer源码解析之一

       GRU4Rec源码(TF版本):github.com/Songweiping/...

       Transformer源码:github.com/kang/SASR...

       序列化推荐领域中,GRU4Rec成功地将循环神经网络(NLP和时序预测常用)应用至推荐领域,此模型取得了良好效果。紧随其后的是"SASR",基于注意力机制的自适应序列推荐模型,实验表明其性能超越了GRU4Rec。

       两篇论文的作者均在源码公开阶段,为研究者提供参考。我们深入剖析源码,后续系列文章将比较GRU4Rec与SASR的差异、联系与优缺点。

       GRU4Rec模型结构简洁,采用门限循环神经网络,Embedding层处理item_id的one_hot编码,降低维度,便于优化。

       并行化训练数据集优化了模型训练速度,构建了training_batch,便于使用GPU加速矩阵运算。

       负采样技术提高了训练频率,利用同一时刻不同session中的item作为负样本。

       模型设计了贝叶斯排序和TOP1等pairwise方法计算排序损失,认为pairwise结果优于pointwise。

       实验数据集包括RSC和私有VIDEO集,结果表明GRU4Rec模型性能优秀,测试集评价指标包括召回率(recall)和倒序排名得分(mrr)。

       深入分析模型的Tensorflow版本代码,主要从main.py和model.py文件开始,重点解析模型定义、损失函数、GRU4Rec核心代码、数据集初始化、模型训练与预测以及评估函数。

       GRU4Rec的代码分析暂告一段落,后续将详细梳理SASR代码,目标是通过三篇文章全面探讨两个模型的细节。感谢关注。

本科生学深度学习一最简单的LSTM讲解,多图展示,源码实践,建议收藏

       作为本科新手,理解深度学习中的LSTM并非难事。LSTM是一种专为解决RNN长期依赖问题而设计的循环神经网络,它的独特之处在于其结构中的门控单元,包括遗忘门、输入门和输出门,它们共同控制信息的流动和记忆单元的更新。

       问题出在RNN的梯度消失和爆炸:当参数过大或过小时,会导致梯度问题。为解决这个问题,LSTM引入了记忆细胞,通过记忆单元和门的协作,限制信息的增减,保持梯度稳定。遗忘门会根据当前输入和前一时刻的输出决定遗忘部分记忆,输入门则控制新信息的添加,输出门则筛选并决定输出哪些记忆。

       直观来说,LSTM的网络结构就像一个记忆库,信息通过门的控制在细胞中流动,确保信息的持久性。PyTorch库提供了LSTM模块,通过实例演示,我们可以看到它在实际中的应用效果。虽然LSTM参数多、训练复杂,但在处理长序列问题时效果显著,有时会被更轻量级的GRU所替代。

       如果你对LSTM的原理或使用感兴趣,可以参考我的源码示例,或者在我的公众号留言交流。感谢关注和支持,期待下期的GRU讲解。

更多内容请点击【知识】专栏