本站提倡有节制游戏,合理安排游戏时间,注意劳逸结合。

【挂机游戏 源码】【小川编程源码】【网站源码抓取方法】spark sql 源码

2024-11-21 01:39:56 来源:综合 分类:综合

1.为什么sparkSQL
2.SparkSQL源码分析-05-SparkSQL的源码join处理
3.spark sql源码系列 | json_tuple一定比 get_json_object更高效吗?
4.spark sql源码系列 | with as 语句真的会把查询的数据存内存嘛?
5.SPARK-38864 - Spark支持unpivot源码分析

spark sql 源码

为什么sparkSQL

       Shark和sparkSQL 但是,随着Spark的发展,其中sparkSQL作为Spark生态的一员继续发展,而不再受限于hive,只是兼容hive;而hive on spark是一个hive的发展计划,该计划将spark作为hive的底层引擎之一,也就是说,hive将不再受限于一个引擎,可以采用map-reduce、Tez、spark等引擎。

       ã€€ã€€Shark为了实现Hive兼容,在HQL方面重用了Hive中HQL的解析、逻辑执行计划翻译、执行计划优化等逻辑,可以近似认为仅将物理执行计划从MR作业替换成了Spark作业(辅以内存列式存储等各种和Hive关系不大的优化);同时还依赖Hive Metastore和Hive SerDe(用于兼容现有的各种Hive存储格式)。这一策略导致了两个问题,第一是执行计划优化完全依赖于Hive,不方便添加新的优化策略;二是因为MR是进程级并行,写代码的时候不是很注意线程安全问题,导致Shark不得不使用另外一套独立维护的打了补丁的Hive源码分支(至于为何相关修改没有合并到Hive主线,我也不太清楚)。

       ã€€ã€€æ­¤å¤–,除了兼容HQL、加速现有Hive数据的查询分析以外,Spark SQL还支持直接对原生RDD对象进行关系查询。同时,除了HQL以外,Spark SQL还内建了一个精简的SQL parser,以及一套Scala DSL。也就是说,如果只是使用Spark SQL内建的SQL方言或Scala DSL对原生RDD对象进行关系查询,用户在开发Spark应用时完全不需要依赖Hive的任何东西。

SparkSQL源码分析--SparkSQL的join处理

       SparkSQL的join处理策略多样,针对不同场景各有优劣。源码首先,源码map join适用于小表广播至worker节点,源码提升性能,源码但大表可能导致OOM。源码挂机游戏 源码shuffle hash join则对大表进行分区和排序,源码效率高但内存密集。源码默认策略通过sort merge join,源码对大表进行分区排序,源码避免内存问题,源码但需预先排序。源码

       当常规策略不可用时,源码会考虑等值或不等值join的源码广播nested loop join,适用于特定条件的源码right或left outer join。笛卡尔积join在无指定key时使用,仅限inner join。小川编程源码

       SparkPlan中的Join子节点与策略紧密相关,如在等值连接时,根据hint选择Broadcast hash join、Shuffle sort merge join或shuffle hash join。没有hint时,依据表大小、join类型和排序情况自动选择。

       非等值连接时,hint会引导使用broadcast nested loop join或Cartesian product join,无hint时则依据表大小和连接类型来决定。

       在特殊情况下,如NotInSubquery,仍可能选择Broadcast hash join。总的来说,SparkSQL的join策略灵活多变,旨在根据具体场景提供最优的网站源码抓取方法执行效率和资源利用率。

spark sql源码系列 | json_tuple一定比 get_json_object更高效吗?

       对比json_tuple和get_json_object,网上普遍认为json_tuple效率更高。理由是json_tuple仅需解析一次json数据,而get_json_object需多次解析。实际操作中,get_json_object在解析json字符串到jsonObject阶段仅执行一次,而非多次解析。从执行计划角度看,get_json_object更为简洁,而json_tuple涉及udtf函数,其执行计划更为繁重。功能多样性上,get_json_object支持更丰富的路径处理,如正则匹配、嵌套、多层取值等,家电管理系统源码而json_tuple仅能解析第一层key。在实际使用时,无需盲从效率结论,根据具体需求选择。确保json数据不过长过大,无论使用哪种方法,效率都不会理想。正确理解并合理运用这些函数,对于优化查询性能至关重要。

spark sql源码系列 | with as 语句真的会把查询的数据存内存嘛?

       在探讨 Spark SQL 中 with...as 语句是否真的会把查询的数据存入内存之前,我们需要理清几个关键点。首先,网上诸多博客常常提及 with...as 语句会将数据存放于内存中,来提升性能。那么,实际情况究竟如何呢?

       让我们以 hive-sql 的聚星直播游戏源码视角来解答这一问题。在 hive 中,有一个名为 `hive.optimize.cte.materialize.threshold` 的参数。默认情况下,其值为 -1,代表关闭。当值大于 0 时(如设置为 2),with...as 语句生成的表将在被引用次数达到设定值后物化,从而确保 with...as 语句仅执行一次,进而提高效率。

       接下来,我们通过具体测试来验证上述结论。在不调整该参数的情况下,执行计划显示 test 表被读取了两次。此时,我们将参数调整为 `set hive.optimize.cte.materialize.threshold=1`,执行计划显示了 test 表被物化的情况,表明查询结果已被缓存。

       转而观察 Spark SQL 端,我们并未发现相关优化参数。Spark 对 with...as 的操作相对较少,在源码层面,通过获取元数据时所做的参数判断(如阈值与 cte 引用次数),我们可以发现 Spark 在这个逻辑上并未提供明确的优化机制,来专门针对 with...as 语句进行高效管理。

       综上所述,通过与 hive-sql 的对比以及深入源码分析,我们得出了 with...as 语句在 Spark SQL 中是否把数据存入内存的结论,答案并不是绝对的。关键在于是否通过参数调整来物化结果,以及 Spark 在自身框架层面并未提供特定优化策略来针对 with...as 语句进行内存管理。因此,正确使用 with...as 语句并结合具体业务场景,灵活调整优化参数策略,是实现性能提升的关键。

SPARK- - Spark支持unpivot源码分析

       unpivot是数据库系统中用于列转行的内置函数,如SQL SERVER, Oracle等。以数据集tb1为例,每个数字代表某个人在某个学科的成绩。若要将此表扩展为三元组,可使用union实现。但随列数增加,SQL语句变长。许多SQL引擎提供内置函数unpivot简化此过程。unpivot使用时需指定保留列、进行转行的列、新列名及值列名。

       SPARK从SPARK-版本开始支持DataSet的unpivot函数,逐步扩展至pyspark与SQL。在Dataset API中,ids为要保留的Column数组,Column类提供了从String构造Column的隐式转换,方便使用。利用此API,可通过unpivot函数将数据集转换为所需的三元组。values表示转行列,variableColumnName为新列名,valueColumnName为值列名。

       Analyser阶段解析unpivot算子,将逻辑执行计划转化为物理执行计划。当用户开启hive catalog,SPARK SQL根据表名和metastore URL查找表元数据,转化为Hive相关逻辑执行计划。物理执行计划如BroadcastHashJoinExec,表示具体的执行策略。规则ResolveUnpivot将包含unpivot的算子转换为Expand算子,在物理执行计划阶段执行。此转换由开发者自定义规则完成,通过遍历逻辑执行计划树,根据节点类型及状态进行不同处理。

       unpivot函数实现过程中,首先将原始数据集投影为包含ids、variableColumnName、valueColumnName的列,实现语义转换。随后,通过map函数处理values列,构建新的行数据,最终返回Expand算子。在物理执行计划阶段,Expand算子将数据转换为所需形式,实现unpivot功能。

       综上所述,SPARK内置函数unpivot的实现通过解析列参数,组装Expand算子完成,为用户提供简便的列转行功能。通过理解此过程,可深入掌握SPARK SQL的开发原理与内在机制。

相关推荐
一周热点