1.Docker 源码分析
2.slate.js源码分析(四)- 历史记录机制
3.coreboot源码分析之 boot state machine 设计
4.RocketMQ源码分析:Broker概述+同步消息发送原理与高可用设计及思考
5.dayjs源码解析(一):概念、源码locale、分析constant、设计utils tags
6.Flink源码分析——Checkpoint源码分析(二)
Docker 源码分析
本文旨在解析Docker的源码核心架构设计思路,内容基于阅读《Docker源码分析》系文章后,分析整理的设计转卡源码核心架构设计与关键部分摘抄。Docker是源码Docker公司开源的基于轻量级虚拟化技术的容器引擎项目,使用Go语言开发,分析遵循Apache 2.0协议。设计Docker提供快速自动化部署应用的源码能力,利用内核虚拟化技术(namespaces及cgroups)实现资源隔离与安全保障。分析相比虚拟机,设计Docker容器运行时无需额外的源码系统开销,提升资源利用率与性能。分析Docker迅速获得业界认可,设计包括Google、Microsoft、VMware在内的领导者支持。Google推出Kubernetes提供Docker容器调度服务,Microsoft宣布Azure支持Kubernetes,VMware与Docker合作。Docker在分布式应用领域获得万美元的C轮融资。
Docker的架构主要由Docker Client、Docker Daemon、Docker Registry、Graph、Driver、libcontainer以及Docker container组成。
Docker Client:用户通过命令行工具与Docker Daemon建立通信,发起容器管理请求。
Docker Daemon:后台运行的系统进程,接收并处理Docker Client请求,通过路由与分发调度执行相应任务。
Docker Registry:存储容器镜像的钱林源码仓库,支持公有与私有注册。
Graph:存储已下载镜像,并记录镜像间关系的数据库。
Driver:驱动模块,实现定制容器执行环境,包括graphdriver、networkdriver和execdriver。
libcontainer:库,使用Go语言设计,直接访问内核API,提供容器管理功能。
Docker container:Docker架构的最终服务交付形式。
架构内各模块功能如下:
Docker Client:用户与Docker Daemon通信的客户端。
Docker Daemon:后台服务,接收并处理请求,执行job。
Graph:存储容器镜像,记录镜像间关系。
Driver:实现定制容器环境,包括管理、网络与执行驱动。
libcontainer:库,提供内核访问,实现容器管理。
Docker container:执行容器,提供隔离环境。
核心功能包括从Docker Registry下载镜像、创建容器、运行命令与网络配置。
总结,通过Docker源码学习,深入了解其设计、功能与价值,水晶源码免费有助于在分布式系统实现中找到与已有平台的契合点。同时,熟悉Docker架构与设计思想,为云计算PaaS领域带来实践与创新启发。
slate.js源码分析(四)- 历史记录机制
应用中常见撤销与重做功能,尤其在编辑器中,其实现看似简单却也非易事。为了更好地理解这一机制,本文将深入探讨 MVC 设计模式,并聚焦于 slate.js 如何巧妙地实现撤销与重做功能。
MVC 模式是一种经典的软件架构模式,自 年提出以来便广为应用。在 MVC 模式中,模型(Model)负责管理数据,视图(View)展示数据,而控制器(Controller)则负责处理用户输入与模型更新。
在撤销与重做功能的设计中,通常有两种实现思路。其中一种是通过 Redux 等状态管理库实现,而 slate.js 则采用了一种更为直接的方法。本文将重点介绍 slate.js 的实现策略。
撤销功能允许用户回溯至之前的页面状态,而重做功能则让用户能够恢复已撤销的操作。在执行操作后,当用户请求撤销时,系统会抛弃当前状态并恢复至前一状态。对于复杂的操作,如表格的复制与粘贴,系统的处理逻辑则更为精细,能够跳过不需要记录在历史记录中的状态,确保撤销操作的精准性。
slate.js 的状态模型主要基于树状的文档结构,通过三种类型的蜂窝论坛源码操作指令来管理文档状态:针对节点的修改、光标位置的调整以及文本内容的变更。对节点与文本的修改,可通过特定指令来实现,而光标操作则通常直接修改数据。借助这九种基本操作,富文本内容的任何变化都能被准确地记录与恢复。
在实现撤销功能时,关键在于如何根据操作指令中的信息推导出相应的撤销操作。例如,撤销对节点的修改操作,只需对记录的操作进行逆向操作即可。相比之下,重做功能则相对简单,只需在撤销操作时记录下指令,以便在后续操作中恢复。
操作的记录以数组形式进行,便于后续的撤销与重做操作。通过合理的指令与数据模型设计,复杂的操作最终被拆解为简单且可逆的原子操作,确保了功能的高效与稳定。
总结而言,通过精心设计的指令与数据模型,撤销与重做功能得以实现,使应用在面对用户操作时能够灵活应对,提供无缝的用户体验。此外,本文还附带了一个招聘信息,百度如流团队正面向北京、上海、深圳等地招聘,欢迎有志之士加入。
参考资料包括:Web 应用的撤销重做实现、slatejs。站长查看源码
coreboot源码分析之 boot state machine 设计
boot state machine 在 Coreboot 中提供了一种系统启动流程的结构化方式,其主要功能是将整个 ramstage 的启动过程转化为一系列状态机函数的调用。定义了个状态,通过枚举常量 `enum boot_state_t` 进行标识。每个状态可选择性地定义 `entry` 回调函数和 `exit` 回调函数,分别在状态转换前和后执行,以实现类似函数调用栈的操作。 状态机的核心数据结构包括: 状态描述符,包含 `run_state` 函数,用于执行状态的主要任务。 `entry` 和 `exit` 回调函数,分别在状态转换前和后调用。 `phases` 数组,存放 `entry` 和 `exit` 回调函数的链表。 `blockers`,用于管理状态转换的条件。 定义的个状态的 `run_state` 函数具有特定的实现模式,如 `BS_DEV_ENUMERATE` 的 `run_state` 实现。宏 `BS_INIT_ENTRY` 用于初始化状态描述符,创建 `boot_state_init_entry` 结构体,其中包含状态的入口/出口回调函数的详细信息。宏 `BOOT_STATE_INIT_ENTRY` 则简化了结构体的初始化过程。 所有状态的 `entry/exit` 函数描述符存储在 `.bs_init` 段中,该段的起始和结束地址由 `src\lib\program.ld` 文件定义。通过遍历 `.bs_init` 段,根据描述符中的状态成员查找状态描述符,并将 `entry/exit` 函数描述符插入到 `boot_state` 结构体的 `phases[]` 数组中,实现状态间正确的回调链接。 启动流程中,`state_tracker` 变量记录当前执行状态的信息。状态机的函数执行通过调用状态描述符中的 `run_state` 函数,同时自动处理 `entry` 和 `exit` 回调函数,确保启动过程的有序性和完整性。RocketMQ源码分析:Broker概述+同步消息发送原理与高可用设计及思考
Broker在RocketMQ架构中扮演关键角色,主要负责存储消息,其核心任务在于持久化消息。消息通过生产者发送给Broker,而消费者则从Broker获取消息。Broker的物理部署架构图清晰展示了这一过程。
从配置文件角度,我们深入探讨Broker的存储设计,重点关注以下几个方面:消息发送、消息协议、消息存储与检索、消费队列维护、消息消费与重试机制。深入分析Broker内部实现,包括消息发送过程、获取topic路由信息、选择消息队列以及发送消息至特定Broker。
消息发送过程包括参数解析、发送方式选择、回调函数配置以及超时时间设定。同步消息发送流程主要分为获取路由信息、选择消息队列、发送消息、更新失败策略与处理同步调用方式。获取路由信息过程包括从本地缓存尝试获取、从NameServer获取配置信息更新缓存,以及针对特定或默认topic的路由信息查询。
选择消息队列时考虑Broker负载均衡,通过轮询机制获取下一个可用消息队列。选择队列逻辑涉及发送失败延迟规避机制,确保选择的Broker正常,并根据Broker状态进行排序后选择一个队列。消息发送至指定Broker,使用长连接发送并存储消息,同步消息发送包含重试机制,异步消息发送则在回调中处理重试。
思考题:分析消息发送异常处理,包括NameServer宕机与Broker挂机情况。NameServer宕机时,生产者可利用本地缓存继续发送消息,而Broker挂机会导致消息发送失败,但通过故障延迟机制可确保高可用性设计。理解这些机制与流程,有助于深入掌握RocketMQ的同步消息发送原理与高可用设计。
dayjs源码解析(一):概念、locale、constant、utils tags
深入剖析 Day.js 源码(一):概念、locale、constant、utils
Day.js 是一款轻量级的时间库,由饿了么的开发大佬 iamkun 维护,主打无需引入过多依赖,以减少打包体积的特性。本文将通过解析 Day.js 的源码,揭示其结构与功能的奥秘,旨在为开发者提供深入理解与应用 Day.js 的工具。
目录概览
本文将分五章展开 Day.js 的源码解析,分别从代码结构、基础概念、时间标准、语言(文化)代码以及 locale、constant、utils 的实现进行深入探讨。我们将逐步揭开 Day.js 的核心逻辑与设计思路。
代码结构与依赖分析
Day.js 的源代码目录结构简洁明了,主要依赖集中在入口文件 src/index.js 中。此文件依赖链简单,未直接引用 locale 和 plugin 目录下的语言包与插件,体现出 Day.js 优化体积、按需加载的核心优势。
基础概念与时间标准
在解析源码之前,理解以下基础概念至关重要,包括时间标准、GMT、UTC、ISO 等。这些标准与概念为后续分析提供了背景知识。
时间标准解释
格林尼治平均时间(GMT)与协调世界时(UTC)是本文中的核心时间概念。GMT 作为本初子午线上的平太阳时,而 UTC 则是基于原子时标准,与格林威治标准时间(GTM)关系密切。本文详细解释了 UTC 的定义、用途与与 0 度经线平太阳时的关系。
ISO 标准
ISO 是国际标准化组织推荐的日期和时间表示方法。在 JavaScript 中,Date.prototype.toISOString() 方法返回遵循 ISO 标准的字符串,以 UTC 时间为基准。
语言(文化)代码与 locale
不同语言对时间的描述各具特色,Day.js 通过 locale 实现了多语言支持,用户可根据需求引入相应的语言包。本文介绍了语言代码与 locale 的关联,以及如何按需加载特定语言。
constant 与 utils
src/constant.js 和 src/utils.js 分别负责存储常量与工具函数。constant 文件中包含了时间单位与格式化的正则表达式,而 utils.js 则封装了一系列实用工具函数,用于简化时间操作。
总结与展望
本文完成了 Day.js 源码解析的第一部分,深入探讨了概念、locale、constant、utils 的实现。接下来,我们将分析 Day.js 的核心文件 src/index.js,解析 Dayjs 类的实现细节。欢迎关注后续内容,期待与您共同探索 Day.js 的更多奥秘。
Flink源码分析——Checkpoint源码分析(二)
《Flink Checkpoint源码分析》系列文章深入探讨了Flink的Checkpoint机制,本文聚焦于Task内部状态数据的存储过程,深入剖析状态数据的具体存储方式。Flink的Checkpoint核心逻辑被封装在`snapshotStrategy.snapshot()`方法中,这一过程主要由`HeapSnapshotStrategy`实现。在进行状态数据的快照操作时,首先对状态数据进行拷贝,这里采取的是引用拷贝而非实例拷贝,速度快且占用内存较少。拷贝后的状态数据被写入到一个临时的`CheckpointStateOutputStream`,即`$CHECKPOINT_DIR/$UID/chk-n`格式的目录,这个并非最终数据存储位置。
在拷贝和初始化输出流后,`AsyncSnapshotCallable`被创建,其`callInternal()`方法中负责将状态数据持久化至磁盘。这个过程分为几个关键步骤:
获取`CheckpointStateOutputStream`,写入状态数据元数据,如状态名、序列化类型等。
对状态数据按`keyGroupId`进行分组,依次将每个`keyGroupId`对应的状态数据写入文件。
封装状态数据的元数据信息,包括存储路径和大小,以及每个`keyGroupId`在文件中的偏移位置。
在分组过程中,状态数据首先被扁平化并添加到`partitioningSource[]`中,同时记录每个元素对应的`keyGroupId`在`counterHistogram[]`中的位置。构建直方图后,数据依据`keyGroupId`进行排序并写入文件,同时将偏移位置记录在`keyGroupOffsets[]`中。具体实现细节中,`FsCheckpointStateOutputStream`用于创建文件系统输出流,配置包括基路径、文件系统类型、缓冲大小、文件状态阈值等。`StreamStateHandle`最终封装了状态数据的存储文件路径和大小信息,而`KeyedStateHandle`进一步包含`StreamStateHandle`和`keyGroupRangeOffsets`,后者记录了每个`keyGroupId`在文件中的存储位置,以供状态数据检索使用。
简而言之,Flink在执行Checkpoint时,通过一系列精心设计的步骤,确保了状态数据的高效、安全存储。从状态数据的拷贝到元数据的写入,再到状态数据的持久化,每一个环节都充分考虑了性能和数据完整性的需求,使得Flink的实时计算能力得以充分发挥。
2025-01-03 00:05
2025-01-03 00:04
2025-01-02 23:57
2025-01-02 23:26
2025-01-02 22:45
2025-01-02 22:31