1.[clang]: llvm 前端编译流程
2.LLVM IR 指南
3.一文带你梳理Clang编译步骤及命令
4.WebRTC入门:iOS工程
[clang]: llvm 前端编译流程
clang编译流程分为五个主要步骤:预处理器、码分编译器、码分后端生成、码分汇编、码分链接器。码分
预处理阶段主要进行文本替换操作,码分cmfb指标源码处理编译语言中的码分预处理指令,如导入头文件和宏替换等,码分不进行语法和词法检测。码分
编译器阶段通过词法分析和语法分析,码分将预处理结果转换成抽象语法树(AST),码分以便生成中间表示(IR)。码分例如,码分从文件test.cc生成的码分AST将会被转换成可读的文本中间表示(ll)或不可读的bitcode(bc)文件。
生成IR阶段,码分AST被转换为中间表示格式,确保正确识别代码的语法结构。bitcode(bc)和ll文件为两种不同的中间表示形式,二者可以相互转换。通过指令可以实现从中间表示到汇编语言的转换。
汇编阶段,使用指令将中间表示转换为汇编代码(test.s),汇编语言代码可用于运行或进一步转换。
最后阶段是链接器,将生成的汇编代码(或其他类型的目标文件)链接为可执行文件或动态库。
总结,APP源码目录整个流程包含以下关键输出文件:
- test.c:源代码输入
- test.i:预处理输出文件
- test.bc:bitcode中间表示文件
- test.ll:可读的文本中间表示文件
- test.s:汇编代码输出
- test.o:单文件生成的二进制文件
- image:最终的可执行文件
注意流程图中箭头方向表示文件转换方向,实线部分介绍Clang编译器相关功能,虚线部分不涉及。
LLVM IR 指南
LLVM IR是一种通用的程序表示形式,编程语言编译器通过前端生成并经过一系列分析和转换(称为pass)生成优化后的IR。这种表示允许跨语言和硬件的隔离,便于优化,并支持在不同阶段进行优化,比如runtime时,IR会被保留并在发现可优化点时进行重新编译。
LLVM IR有三种形式:内存中的ir、硬盘上的bitcode文件(ir.bc)和供人阅读的文本形式(ir.ll)。在编译过程中,ir的内存格式用于全阶段优化,特别是在需要runtime优化时。
LLVM工具链包含了编译LLVM源码所需的工具,通常在编译目录的bin目录下。要生成IR的基本结构,可以使用clang命令。IR的基本结构由module、function、basicblock和instruction组成,每个模块可能包含多个函数,每个函数由多个基本块构成,体现了控制流的uvm源码解析执行逻辑。
LLVM的Pass Manager执行分析和转换,包括analysis pass和transform pass。新旧Pass Manager在结构和命令行使用上有所不同。Pass的执行顺序通常从module开始,逐步深入到function、loop等层次,涉及到如别名分析、MemorySSA和Loop-Invariant-code-motion等优化策略。
例如,别名分析分析变量的load/store操作产生的别名,通过构建语句间的约束和迭代生成alias,提供函数间的内存依赖信息。MemorySSA则在此基础上,提供内存依赖查询,便于IR的分析和transform pass。
Link-time优化是LLVM的另一大优势,它允许在链接阶段对整个程序的IR进行优化,利用内存中的IR进行更深入的分析和改进。这比传统编译过程中的优化更为灵活和高效。
调试和命令行使用方面,LLVM提供了丰富的工具和技巧,帮助开发者在编译过程中进行调试和优化,比如MakeFile中的关键语句和调试技巧。
一文带你梳理Clang编译步骤及命令
摘要: 本文简单介绍了Clang编译过程中涉及到的步骤和每个步骤的产物,并简单分析了部分影响预处理和编译成功的窗体监控源码部分因素。本文简单介绍部分Clang和LLVM的编译命令。更关注前端部分(生成 IR 部分)。
1. Clang编译步骤概览我们可以使用命令打印出来Clang支持的步骤,如下:
clang-ccc-print-phasestest.c+-0:input,"test.c",c+-1:preprocessor,{ 0},cpp-output+-2:compiler,{ 1},ir+-3:backend,{ 2},assembler+-4:assembler,{ 3},object5:linker,{ 4},image根据上面的介绍,可以根据每一部分的结果,分为5个步骤(不包含上面的第0步):preprocessor、compiler、backend、assembler、linker等。
具体到 Clang 中每一步骤生成的结果文件。我们可以使用下面的示意图来表示:
说明:上面的示意图以Clang编译一个C文件为例,介绍了Clang编译过程中涉及到的中间文件类型:
(1) test.c 为输入的源码(对应步骤 0);
(2) test.i 为预处理文件(对应步骤 1 的输出,cpp-output 中,cpp 不是指 C++ 语言,而是 c preprocessor 的 缩写);
(3) test.bc 为 bitcode文件,是clang的一种中间表示(对应步骤 2 的输出);
(4) test.ll 为一种文本化的中间表示,可以打开来看的(对应步骤 2 的输出, 和 .bc 一样都是中间表示,可以相互转化);
(5) test.s 为汇编结果(对应步骤 3 的输出);
(6) test.o 为单文件生成的二进制文件(对应步骤 4 的输出);
(7) image 为可执行文件(对应步骤 5 的输出)。
注意:示意图画的也并不完整,如下介绍:
(1) 箭头所指的方向,表示可以从一种类型的文件,生成箭头所指的文件类型;
(2) 图中箭头并没有画完,比如可以从 test.c 生成 test.s,csgo 抽奖源码 test.o 等。如果将上面的示意图当做一种 有向图,那么基于 箭头 所指的方向,只要 节点能连接的点,都是可以做转换的;
(3) 图中的实线和虚线,只是表示本人关心的Clang编译器中的内容,并没有其他的含义,本文也只介绍图中实线部分的内容,虚线部分的内容不做介绍。
2. 转换命令集合下面介绍部分涉及到上面步骤的转换命令:
#1..c->.iclang-E-ctest.c-otest.i#2..c->.bcclang-emit-llvmtest.c-c-otest.bc#3..c->.llclang-emit-llvmtest.c-S-otest.ll#4..i->.bcclang-emit-llvmtest.i-c-otest.bc#5..i->.llclang-emit-llvmtest.i-S-otest.ll#6..bc->.llllvm-distest.bc-otest.ll#7..ll->.bcllvm-astest.ll-otest.bc#8.多bc合并为一个bcllvm-linktest1.bctest2.bc-otest.bc上面列出了一部分Clang不同文件直接转换的命令(和第 1 部分的 示意图 序号匹配,还是只关心前端部分)。只是最后增加了一个将多个 bc 合并为一个 bc file 的命令。
3. 查看Clang AST结构我们可以通过如下的命令查看源码的AST结构:
clang-Xclang-ast-dump-ctest.c打印出来的AST信息,其实是预处理之后展开的源码信息,源码的AST内容在打印出来的内容的最下面。
如下面的代码:
#include<stdio.h>intmain(){ printf("hello");return0;}打印出来的部分AST(仅根当前文件内容匹配部分)如下:
头上的头文件引用等已经展开,没有了,但是下面的 main 函数定义,则如上面的 FunctionDecl 所示,并且给出了 代码中的位置。这里就不详细分析AST的结构了,写几个例子比对一下就很容易理解。
4. 编译正确性的影响因素当前,很多静态代码分析工具,都采用 Clang 和 LLVM 作为底座来开发静态代码分析工具。Clang自己也有 clang-tidy 工具可以用来做 C/C++ 语言的静态代码分析。为了能够用 Clang 和 LLVM 来成功分析 C/C++ 代码,需要考虑如何成功使用 Clang 和 LLVM 来编译 C/C++ 代码。可以考虑的是,成功生成 bc file,是静态代码分析的基础操作。
4.1 影响预处理结果的因素预处理过程,作用跟名字一样,都可以不当做编译的一个步骤,而是编译的一个预处理操作。我们说得再直白一点儿,其实就是做了一个文本替换的活儿,就是对 C/C++ 代码中的 预处理指令 进行处理。预处理指令很简单,比如 #include,#define 等,都是预处理指令(可以参考:/en-us/cpp/preprocessor/preprocessor-directives?view=msvc-,或者google下,很多介绍的)。
如果程序中没有预处理指令,即使我们随便瞎写的代码,预处理也一般不会有问题,如下的代码(main.c):
abcdef我们仍然可以正确得到 预处理结果:
#1"main.c"#1"<built-in>"1#1"<built-in>"3#"<built-in>"3#1"<commandline>"1#1"<built-in>"2#1"main.c"2abcdef为了成功执行预处理执行,很容易理解,就是可以对程序中的所有的 预处理指令 进行处理。比如:
(1) #include,依赖了一个头文件,我们能不能成功找到这个头文件;
(2) #define,定义了一个宏,在程序中定义宏的时候,我们能不能准确找到宏(找到,还必须准确);
(3) 其他指令。
4.2 影响IR生成因素这一步是针对上一步生成的预处理指令,进行解析的操作。这一步才是最关键的,归根结底,我们需要保证一点:使Clang编译器可以正确识别出来代码中内容表示的语法结构,并且接纳这种语法结构!
举一些简单例子:
(1) -std 用来指定支持的 C/C++ 标准的,如果我们没有指定,那么就会采用 Clang 默认的标准来编译,就可能导致语法不兼容;
(2) -Werror=* 等参数,可能将某些能识别的语法,给搞成错误的使用;
(3) 其他的部分,跟语法识别的参数;
(4) 还有一部分的语法,可能 Clang 自始至终就没有进行适配,这种就要考虑修改源码了。
4.3 链接相关因素在真正编译中,如果链接有问题,那就会失败,但是在静态代码分析中,链接有失败(无法链接)或者错误(不相关的给链接在一起),可能多点儿分析误报或者漏报,一般不会导致分析失败。这类问题,影响的不是中间表示的生成,而是分析结果(影响跨文件的过程间分析,影响对built-in函数的建模等)。
一般,链接命令的捕获,target信息配置等,会影响这部分的能力。当然,也跟你实现的工具有关(如果实现的工具,就没有跨文件的能力,这部分内容也没啥影响)。
作者:maijun。
WebRTC入门:iOS工程
刚进入项目组,接手WebRTC相关任务。项目需求基于最新WebRTC版本进行二次开发,但其工程使用gn和ninja编译,每次修改需编译成lib或framework,过程繁琐。本文记录WebRTC OC工程分离过程中的经验与教训。
WebRTC,全称为Web Real-Time Communication,是实现实时语音与视频通话的技术,由谷歌于年通过收购Global IP Solutions公司获得。自年5月开源以来,得到广泛支持与应用,成为下一代视频通话的标准。
要获取WebRTC iOS版本源码,首先需设置git代理。由于不可抗力,需自行配置。
编译WebRTC库时,使用GN生成ninja工程文件。了解GN与ninja基本使用,可以借助官方教程,直接编译出WebRTC.framework。官方提供编译脚本,可方便编译静态库或Framework版本,并支持指定编译条件,如debug版本或是否开启bitcode。
目标是将WebRTC.framework集成至Xcode工程,仅关注OC部分的二次开发,减少对C++代码的关注。分离工程需在现有基础上进行,尽量减少源码修改。
生成libjingle_peerconnection_all库,需在/webrtc/BUILD.gn文件中添加新目标,并在build/ios/build_ios_libs.sh脚本中增加编译选项。此过程需按照官方教程进行。
创建WebRTC_OC工程,在webrtc/sdk/objc目录下,参照rtc_sdk_common_objc和rtc_sdk_framework_objc配置,选择性添加所需Framework文件夹代码文件。
分离工程过程中,需关注现有代码库依赖。完全分离需对头文件引用进行大量修改。分离工程旨在最小化修改,进行优化。
总结接触WebRTC代码的经验,分离OC工程虽有助于专注二次开发,但需谨慎处理现有代码库依赖问题。若需完全分离,需对源码进行大量修改。了解更多细节请参阅原文链接。