1.python+opencv实现/短视频一键去水印
2.CV2笔记--图像处理:色彩空间
python+opencv实现/短视频一键去水印
在制作ppt个人文章或者分享过程中,经常会遇到一些带有水印的情况,不少人都希望能够去除这些水印,提高和视频的观看体验。本文将介绍如何使用Python+opencv实现的去水印功能。
首先,权益分销系统源码我们需要导入OpenCV和NumPy库。OpenCV是一个开源的计算机视觉库,可以用于图像和视频处理,NumPy是Python的一个科学计算库,提供了高性能的多维数组对象。
在代码中,我们定义了一个变量pmode来指定处理模式,分时放量指标源码可以是"image"或"video"。当pmode为"image"时,我们从指定路径读取一张;当pmode为"video"时,我们通过cv2.VideoCapture()函数从指定路径读取一个视频。
接下来,我们获取的高度和宽度,并定义了一些全局变量,用于记录鼠标事件的状态和坐标。同时,我们创建了一个与窗口绑定的回调函数,用于实现鼠标事件的交互操作。
在鼠标回调函数中,开发 防止源码拷贝我们根据不同的鼠标事件进行相应的操作。当按下鼠标左键时,开始画矩形或圆形,记录起始坐标;当鼠标移动时,如果继续按下鼠标左键,根据当前模式画矩形或圆形;当释放鼠标左键时,停止画矩形或圆形,根据当前模式完成最后一个矩形或圆形的绘制。
接下来,我们定义了一个waterprint()函数,用于去除中的水印。在该函数中,人事工资源码我们首先定义了要查找的颜色范围,然后将转换为HSV颜色空间,并使用cv2.inRange()函数根据颜色范围得到一个二值图像。接着,我们使用cv2.dilate()函数对二值图像进行膨胀操作,得到一张掩膜图像。最后,我们使用cv2.inpaint()函数根据掩膜图像进行修复操作,得到最终的去水印结果。
在处理视频时,我们首先创建了一个视频编写器,并使用cv2.VideoWriter()函数指定输出视频的头肩底源码格式、帧率和大小。然后,我们使用cv2.VideoCapture()函数读取视频的每一帧,并对每一帧进行去水印操作。最后,我们将处理后的帧写入输出视频,并显示处理后的帧。如果按下键盘上的"s"键,则停止处理并保存输出视频。最后,我们释放资源,关闭窗口。
当处理的是一张,则直接调用waterprint()函数进行去水印,并显示处理后的。
通过以上代码,我们实现了和视频的去水印功能。运行代码并选择相应的处理模式后,可以通过鼠标交互操作选择要去除的水印区域,并得到去水印后的结果。这样,我们就可以更好地欣赏和观看视频,提高视觉体验。
总结起来,本文介绍了如何使用Python编程语言实现和视频的去水印功能。通过OpenCV和NumPy库的支持,我们可以轻松处理图像和视频,并实现自定义的图像处理效果。希望本文对大家了解Python图像处理有所帮助。
点击获取源码:
python+opencv实现/短视频一键去水印
CV2笔记--图像处理:色彩空间
学习目标:改变图像的色彩空间
OpenCV拥有超过种与色彩空间转换相关的方法。其中,BGR到Gray和BGR到HSV的转换是最常用的。
改变色彩空间使用的函数是cv2.cvtColor(src, code),参数:
注意:在OpenCV中,读入的彩色图是按照BGR排列的,而不是我们习惯的RGB。
Note:在OpenCV的HSV空间中,Hue的范围是[0, ],Saturation的范围是[0, ],Value的范围是[0, ]。不同软件设定的范围可能不同。在比较之前,必须进行统一。
有色物体的追踪
HSV空间在表示颜色上比BGR空间更为便利。接下来,我们就在HSV空间中,提取视频每帧图像中的**。
在此之前,先介绍一下HSV空间中的cv2.inRange()函数,它接受三个参数:
函数返回一个与原图大小相同的二值图像作为mask。原图中所有满足HSV空间下指定范围的位置都被标记为,其他位置标记为0。
如何确定HSV空间下目标颜色的范围?
依然可以通过cv2.cvtColor()这个方法。只不过传入的不是图像,而是目标颜色在BGR空间下的值。
HSV空间下标准**的值就是(, , )。因此我们可以把Hue的范围设置在附近,Saturation和Value也设置一定的范围,以此作为上下界。这个过程也可以使用网上的一些色彩空间转换器,但不要忘记统一到OpenCV下的HSV的范围中。
2025-01-08 23:39
2025-01-08 22:33
2025-01-08 22:17
2025-01-08 21:57
2025-01-08 21:50
2025-01-08 21:18