欢迎来到【漫画赚金币源码】【九啸龙吟主图指标公式源码】【九站网源码交易平台】backbone 源码分析-皮皮网网站!!!

皮皮网

【漫画赚金币源码】【九啸龙吟主图指标公式源码】【九站网源码交易平台】backbone 源码分析-皮皮网 扫描左侧二维码访问本站手机端

【漫画赚金币源码】【九啸龙吟主图指标公式源码】【九站网源码交易平台】backbone 源码分析

2025-01-06 05:28:48 来源:{typename type="name"/} 分类:{typename type="name"/}

1.源码学习之noConflict冲突处理机制
2.MMDet——DETR源码解读
3.DETR解读

backbone 源码分析

源码学习之noConflict冲突处理机制

       在早期项目中,源码我有机会深入了解Backbone.js的分析源码,特别是源码其noConflict冲突处理机制。这个机制其实非常直观,分析核心是源码一个简单的函数,代码量虽小,分析漫画赚金币源码但作用显著。源码

       noConflict的分析原理非常巧妙,每次调用这个函数,源码框架就回退到之前的分析一个版本。例如,源码如果你先引入了v1.4.0,分析接着引入v1.0.0,源码那么默认情况下,分析Backbone会指向最新版本v1.0.0。源码九啸龙吟主图指标公式源码执行Backbone.noConflict()后,会回退到v1.4.0,再次调用则会回退到未被覆盖的原始状态,Backbone变成undefined。

       让我们通过一个例子来说明:首先引入v1.4.0和v1.0.0的Backbone,输出的Backbone版本为1.0.0。执行noConflict后,版本会回退到1.4.0,再次执行noConflict则会释放Backbone,使其变为undefined。

       源码中,Backbone的noConflict函数十分注释详尽,帮助开发者理解其工作原理。官方文档解释,九站网源码交易平台这个方法可以防止第三方库对现有Backbone的覆盖,非常实用。

       Backbone的冲突处理机制源自jQuery,很多框架都借鉴了这一设计。jQuery的noConflict方法也类似,除了版本回退,还有一个deep参数,当deep为true时,不仅$变量会回退,jQuery本身也会。

       举个jQuery的例子:引入3.5.1和3.4.1版本,noConflict调用后,无论deep值如何,jQuery和$都会回退到之前的无锡桶装水溯源码价格查询版本。

       总的来说,noConflict冲突处理机制是开发过程中处理版本冲突的有力工具,它通过版本回退确保了代码的稳定性。

MMDet——DETR源码解读

       DETR,作为目标检测领域的里程碑式工作,首次全面采用Transformer架构,实现了端到端的目标检测任务,堪称Transformer在该领域的开创之作。其核心创新在于引入了object query,将目标信息以查询形式输入Transformer的解码器。object query首先通过自注意力机制学习对象特征,确保每个query关注独特的对象信息。接着,它与经过自注意力处理的网上下载的源码能用吗吗图像特征进行交叉注意力,提取目标特征,最终得到包含对象信息的query,通过全连接层(FFN)输出bbox和类别信息。

       深入理解DETR前,首先要明确两个关键点:一是模型结构原理,二是MMDet配置解读。DETR模型主要包括Backbone(如ResNet,常规但非重点)、Transformer的编码器和解码器、以及head部分。在MMDet配置文件中,model部分区分了Backbone和bbox_head。

       在MMDet的单阶段目标检测训练中,forward_single()函数在mmdet/models/dense_heads/detr_head.py中负责除Backbone外的前向计算,代码展示有助于理解。DETR的前向过程涉及的主要变量形状可以参考代码中的打印,但需注意由于随机裁剪,不同batch的形状可能会有所变化。

       Transformer部分在mmdet/models/utils/transformer.py中,N代表特征图的宽度和高度的乘积,这里提供了详细的代码解读。若对Transformer的mask有疑问,可以参考相关文章深入理解。

DETR解读

       DETR(Detection Transformer)是一种新型的目标检测模型,它基于Transformer架构,由Facebook AI Research(FAIR)提出。DETR与传统目标检测方法不同,不使用锚框或候选区域,而是直接将整个图像输入到Transformer中,同时输出目标的类别和边界框。

       DETR的主要构成部分包括backbone、transfomer以及head模块。本文将结合源码对DETR进行解析。

       Backbone部分包含PE(position embedding)和cnn(resnet)主干网络。

       PE采用二维位置编码,x和y方向各自计算了一个位置编码,每个维度的位置编码长度为num_pos_feats(该数值实际上为hidden_dim的一半),奇数位置正弦,偶数位置余弦,最后cat到一起(NHWD),permute成(NDHW)。输入的mask是2**,那么最后输出的pos encoding的shape是2***。

       CNN_backbone采用resnet,以输入3**为例,输出**,下采样5次合计倍。

       Transfomer主要由encoder和decoder两大模块构成。

       TransformerEncoder中,qkv都来自src,其中q和k加了位置编码,v没有加,猜测原因可能是qk之间会计算attention,所以位置是比较重要的,value则是和attention相乘,不需要额外的位置编码。

       TransformerDecoder中,几个重点的变量包括object query的自注意力和cross attention。

       Head部分,分类分支是Linear层,回归分支是多层感知机。

       Matcher采用的是HungarianMatcher匹配,这里计算的cost不参与反向传播。

       Criterion根据匈牙利算法返回的indices tuple,包含了src和target的index,计算损失:分类loss+box loss。

       分类损失采用交叉熵损失函数,回归损失采用L1 loss + Giou loss。

       推理部分,先看detr forward函数,后处理,预测只需要卡个阈值即可。

       论文链接:arxiv.org/pdf/....

       代码链接:github.com/facebookrese...

       参考链接:zhuanlan.zhihu.com/p/... zhuanlan.zhihu.com/p/...

       如需删除侵权内容,请联系我。