皮皮网
皮皮网

【Android系统源码搭建】【云办公系统源码】【nginx源码 哪个版本】python的C源码_python源码怎么用

来源:长阴线源码 发表时间:2025-01-18 15:49:45

1.教你阅读 Cpython 的源码源码用源码(一)
2.python是如何执行的?
3.python调用c程序
4.什么是pyc文件
5.cpython是什么?pypy是什么?python和这两个东西有什么关系
6.CPython源码学习:2、使用GDB调试Python

python的C源码_python源码怎么用

教你阅读 Cpython 的源码(一)

       目录

1. CPython 介绍

       在Python使用中,你是源码源码用否曾好奇字典查找为何比列表遍历快?生成器如何记忆变量状态?Cpython,作为流行版本,源码源码用其源代码为何选择C和Python编写?Python规范,源码源码用内存管理,源码源码用Android系统源码搭建这里一一揭示。源码源码用

       文章将深入探讨Cpython的源码源码用内部结构,分为五部分:编译过程、源码源码用解释器进程、源码源码用编译器和执行循环、源码源码用对象系统、源码源码用以及标准库。源码源码用了解Cpython如何工作,源码源码用从源代码下载、源码源码用编译设置,到Python模块和C模块的使用,让你对Python核心概念有更深理解。

       2. Python 解释器进程

       学习过程包括配置环境、文件读取、词法句法解析,直至抽象语法树。理解这些步骤,有助于你构建和调试Python代码。

       3. Cpython 编译与执行

       了解编译过程如何将Python代码转换为可执行的中间语言,以及字节码的缓存机制,将帮助你认识Python的编译性质。

       4. Cpython 中的对象

       从基础类型如布尔和整数,到生成器,深入剖析对象类型及其内存管理,让你掌握Python数据结构的核心。

       5. Cpython 标准库

       Python模块和C模块的交互,以及如何进行自定义C版本的安装,这些都是Cpython实用性的体现。

       6. 源代码深度解析

       从源代码的细节中,你会发现编译器的云办公系统源码工作原理,以及Python语言规范和tokenizer的重要性,以及内存管理机制,如引用计数和垃圾回收。

       通过本文,你将逐步揭开Cpython的神秘面纱,成为Python编程的高手。继续深入学习,提升你的Python技能。

       最后:结论

       第一部分概述了源代码、编译和Python规范,后续章节将逐步深入,让你在实践中掌握Cpython的核心原理。

       更多Python技术,持续关注我们的公众号:python学习开发。

python是如何执行的?

       理解Python执行,首先需要了解编译型语言的执行过程。以C语言为例,C代码最终会被转换成机器码,由计算机执行。

       在Python中,代码会被编译成Python虚拟机可以理解的字节码,然后由Python虚拟机逐条执行字节码。CPython是Python的官方实现,它包含编译部分、虚拟机执行部分、命令行交互式环境、内置模块实现、包安装API等。

       Python并非解释型或编译型语言,而是解释型语言。Python代码被编译成字节码,而不是直接生成机器码。字节码由CPython运行,类似于虚拟机。CPython包含了一个用于将Python指令变为字节码指令的nginx源码 哪个版本编译器、执行字节码的虚拟机,以及命令行交互式解释环境。

       Python的编译器将Python代码转换为字节码,通过生成PyCodeObject对象来保存函数调用。每个代码对象包含虚拟机执行的字节码和其他函数信息。使用dis模块的dis方法可以查看一个函数的字节码对应的指令。具体编译过程见Python官方指南。

       Python的虚拟机是一个栈机器,字节码解释器通过模拟物理计算机操作多个栈来完成指令。在CPython源码的ceval.c中有一个巨大的switch语句,对应着每一个字节码指令。frame用于保存代码信息和上下文信息,每个函数调用都有一个对应的frame。数据栈/评估栈/值栈是执行指令时的栈。

       .pyc文件是Python的缓存信息,用于加速模块加载。.pyc文件包含魔法数字、时间戳和使用marshaled模块序列化的字节码。当导入模块时,Python会检查是否有缓存文件并检查是否过期。如果没有过期,可以绕过编译阶段。最新版本的Python在加载模块时进行了一定流程的判断。

       关于Python执行过程的了解,参考了大量资料。虽然无法阅读最新的CPython源码,但仍从各种资料中拼凑出对于Python执行过程的理解。推荐的资料包括官方Python Developer's Guide的CPython内部介绍、CPython源码指南、 Lines or Less A Python Interpreter Written in Python、B站码农高天的深入和清晰的中文讲解。

python调用c程序

       Python 调用 C 程序流程概述

       为了实现 Python 调用 C 程序,主要涉及三个关键步骤:

       1. **创建 C 源代码

**

       编写包含所需功能的 C 源代码文件(如 py_test.c),并创建相应头文件(py_test.h)以声明 C 函数。

       2. **编写 C 语言 wrapper

**

       编写一个 C 语言 wrapper 文件(py_testwrapper.c),飞车跑路王源码用于适配 Python 与 C 之间的数据类型。确保包含 Python.h 和 py_test.h,定义 Python 方法以调用 C 函数。

       3. **编译与安装

**

       使用 setup.py 文件来编译生成的 C 代码。通过终端命令“python3 setup.py build”编译代码,然后运行“sudo python3 setup.py install”将生成的模块安装至 Python 库。

       安装完成后,即可在 Python 中导入并使用该模块。

       **测试

**

       通过编写测试程序(如 testpython.py)来验证 C 模块与 Python 的交互功能。测试程序调用 C 函数,并将结果输出至终端。比较不同实现方式(如纯 C 或 Python 实现)的性能,例如,计算圆周率的效率。

       最终测试结果显示,Python 调用 C 程序不仅可以实现高效功能调用,还能通过性能测试确保不同实现方式的准确性和效率。

什么是pyc文件

       PyC文件,全称为Python编译后的字节码文件,其本质是Python程序运行后转换为的优化版本。当Python源代码被执行编译时,会生成这种特殊格式的文件,其目的是为了提高程序的运行效率。PyC文件通常由三个主要部分构成:

       首先,文件的开始是四个字节,称为Magic int,它标识了pyc文件的版本信息。这个版本信息在Python的import.c模块中定义,确保了不同Python版本之间的兼容性。

       接下来的四个字节是一个时间戳,表示pyc文件的创建时间,具体到从年1月1日到生成pyc文件的秒数。这个时间戳有助于追踪和管理文件的生成历史。

       最后,PyC文件的delphi 屏幕 抓图 源码核心部分是一个序列化的PyCodeObject,这个结构在Python的Include/code.h头文件中详细定义。序列化是指将复杂的Python代码对象转换为可存储的格式,以便在需要时快速恢复和执行。

       总的来说,PyC文件是Python程序在编译阶段生成的一种高效表示形式,它通过存储优化后的代码来提升程序运行速度,同时保持与特定Python版本的兼容性。当需要执行这些已经编译过的代码时,系统可以直接读取和执行PyC文件,而无需每次都从源代码重新编译。

cpython是什么?pypy是什么?python和这两个东西有什么关系

       p >本文旨在介绍Python的主流实现CPython是如何执行源代码的。我们将以当前主分支的CPython 3.版本为例,解释从源代码到执行的全过程。

       p > Python语言内嵌有一个编译器。首先,需要对源代码进行词法分析,将字符串转化为一个个单词,以便进一步处理。这一过程主要发生在`Parser/tokenizer.c`文件中,由手工编写实现。

       p > 完成词法分析后,接下来是语法分析阶段。通过这一阶段,CPython真正理解了代码的结构。自Python 3.版本起,CPython采用了一种新的PEG解析器。

       p > PEG,全称Parser Expression Generator,理念是通过描述你设计的语法,生成相应的解析代码。在CPython项目中,`Grammar/python.gram`文件描述了Python语法,通过`Tools/peg_generator/pegen/`生成器转换为解析代码,位于`Parser/parser.c`。我有幸参与过`Grammar/python.gram`的修改,无需修改语法即可保持其稳定。

       p > PEG语法广泛应用于多种场景,因为它允许自定义描述语法,同时生成器也可以自定义。在CPython中,`Tools/peg_generator/pegen/metagrammar.gram`描述了元语法,可以用来生成不同语言的解析代码,并在多种语言中实现。

       p > 语法分析后,结果是抽象语法树(AST),声明在`Include/internal/pycore_ast.h`,并由`ast`模块对外提供接口。

       p > 有了AST,下一步是将其转换为字节码。CPython的核心是解释执行,执行的内容即为字节码。这些字节码保存在`__pycache__/*.pyc`文件中,每个小版本的字节码都可能发生变化,用户不应假设兼容性。我们可以通过`dis`模块查看编译后的结果。

       p > 字节码生成过程涉及符号查找、指令优化等多个步骤,尤其是在Python 3.的性能优化中,有一部分就是在字节码层面进行的改进。这部分主代码位于`Python/compile.c`。

       p > 字节码生成的输入是AST,输出为Python字节码。整个转换过程由`_PyParser_ASTFromFile`函数串联起来。

       p > 完成字节码生成后,下一步是执行字节码。这通常是一个大的循环过程,主要在`_PyEval_EvalFrameDefault`中实现,包含了大量的`switch case`结构。

       p > `Python/generated_cases.c.h`文件包含了几乎所有的字节码实现,并且通过`Python/bytecodes.c`生成。CPython执行的核心通常称为CPython VM(虚拟机)。

       p > 在真正执行之前,还需要内置对象的支持。基本的内置对象如`str`、`list`和`dict`在Python中至关重要。这些对象的C实现构成了CPython VM的重要部分,位于`Objects`目录下,并编译在VM程序中。

       p > Python内置了许多基本库,它们的代码通常位于`Lib`目录下。同时,CPython VM提供了丰富的C API,允许用户编写C扩展,并方便地在C扩展和Python VM之间传递对象。

       p > 为了提供基本功能,CPython必须使用一些操作系统提供的原生C函数,因此内置了许多C扩展。例如,`os`模块的C实现位于`Modules`目录下,这些模块通过CPython VM动态加载。

       p > Python最初的定位是胶水语言,大量C扩展极大地丰富了CPython的生态系统,同时也是其他Python实现如PyPy等的限制。

       p > 最后,将所有这些组件组织起来的代码位于`Python/pythonrun.c`中,经过这一系列步骤后,代码终于可以执行了。

CPython源码学习:2、使用GDB调试Python

       在深入探究CPython源码的过程中,首先要编译出Python的Debug版本,以便后续使用gdb进行调试。

       安装gcc、g++、cmake等工具后,可参考Python开发者文档(Python Developer’s Guide)了解编译Python Debug版本的方法。

       了解GDB的基本用法是进行调试的先决条件。在终端输入特定命令即可启动Python,并进入监控状态。

       在此状态下,GDB会读取Python的符号表,但程序尚未执行。可在main函数设置断点,例如:

       通过这种方式,程序会在python.c的第行暂停。断点也可以通过(文件名:行号)的形式设置。

       输入特定命令开始执行程序,程序将在设定的断点处暂停。此时,可以使用命令查看代码,或进入tui模式查看。

       使用tui模式可以更清晰地看到断点位置,并通过输入tui获取更多使用方法。继续执行程序,Python将进入正常指令模式。

       在GDB中,可以使用Python脚本文件进行调试。例如,创建一个名为test.py的Python脚本文件,内容为一个简单的赋值语句。

       在GDB中监控Python执行,并给main函数配置输入参数。argc和argv是main函数的参数,与执行python时携带的参数类似。

       配置参数后,在main函数中设置断点,并执行至main函数。此时,argc的参数将显示为2。

       通过步进,可以观察到Python实际执行的函数是pymain_main。该函数分为两步:初始化系统参数和执行脚本。

       继续步进,将到达pymain_run_python。在约行,有一个分支判断,表示Python可以从命令行、module、import、文件和stdin执行。

       使用test.py文件时,将进入pymain_run_file,并最终到达_PyRun__AnyFileObject函数。Python将从该函数开始解析test.py文件内容。

       使用特定指令可以查看当前函数调用情况。从_PyRun__AnyFileObject进入后,Python将开始读取文件内容,并使用语法解析器解析文件,建立语法树,最终执行程序。

       后续将继续研究Python语法解析器、语法树、符号表、编译器等内容,并通过GDB调试方式研究其原理,与大家共同交流。

Python C语言API教程(一、用C写一个Python包)

       Python的C语言API教程(一:实践入门)

       Python的C语言API在提升程序性能和实现跨平台适配方面发挥着关键作用。通过官方API,开发者可以直接操作Python解释器的底层,绕过Python的GIL限制,达到加速效果,如cython和codon等工具相比,C语言API更为直接有效。

       Python的C语言API还支持本地化适配,例如PyQT库,它根据操作系统和硬件调整图形界面。在机器学习框架TensorFlow这类需要底层优化和硬件适配的场景中,C语言API更是不可或缺。

       理解C语言API有助于深入学习CPython,因为Python的执行实际上就是调用C语言API。Python源码阅读者会发现,熟悉API有助于解析CPython的内部工作原理。

       要进行Python的C开发,首先需要配置环境。Windows用户需安装Visual Studio Build Tools,选择Python开发和C++桌面开发工作负荷。Mac/Linux用户则需安装Python开发包(如GCC)和调试工具(如Windows的Visual Studio自带工具或Mac/Linux的GDB)。

       接下来,我们将通过实例创建一个简单的Python扩展模块datetimecpy,模拟官方datetime模块。我们从编写Python调用代码开始,然后用C语言实现,包括头文件引入、定义now方法、注册方法、模块定义、以及将模块嵌入到Python解释器中。

       通过本章,你将掌握创建C扩展模块的基础步骤。在后续章节,我们将深入讲解PyObject对象及其在C语言API中的应用。

相关栏目:探索