1.redis源码解读(一):事件驱动的码图io模型,为什么,码图是码图什么,怎么做
2.redis源码学习-quicklist篇
3.Redis 码图源码分析字典(dict)
4.Redis源码阅读(1)——zmalloc
5.Redis 源码剖析 3 -- redisCommand
6.Redis源码从哪里读起?
redis源码解读(一):事件驱动的io模型,为什么,码图是码图斩魂源码什么,怎么做
Redis作为一个高性能的码图内存数据库,因其出色的码图读写性能和丰富的数据结构支持,已成为互联网应用不可或缺的码图中间件之一。阅读其源码,码图可以了解其内部针对高性能和分布式做的码图种种设计,包括但不限于reactor模型(单线程处理大量网络连接),码图定时任务的码图实现(面试常问),分布式CAP BASE理论的码图实际应用,高效的码图数据结构的实现,其次还能够通过大神的代码学习C语言的编码风格和技巧,让自己的代码更加优雅。
下面进入正题:为什么需要事件驱动的io模型
我们可以简单地将一个服务端程序拆成三部分,接受请求->处理请求->返回结果,其中接收请求和处理请求便是我们常说的网络io。那么网络io如何实现呢,首先我们介绍最基础的io模型,同步阻塞式io,也是很多同学在学校所学的“网络编程”。
使用同步阻塞式io的单线程服务端程序处理请求大致有以下几个步骤
其中3,4步都有可能使线程阻塞(6也会可能阻塞,这里先不讨论)
在第3步,如果没有客户端请求和服务端建立连接,那么服务端线程将会阻塞。如果redis采用这种io模型,那主线程就无法执行一些定时任务,比如过期key的清理,持久化操作,集群操作等。
在第4步,如果客户端已经建立连接但是没有发送数据,服务端线程会阻塞。若说第3步所提到的定时任务还可以通过多开两个线程来实现,那么第4步的14的十进制整数源码阻塞就是硬伤了,如果一个客户端建立了连接但是一直不发送数据,服务端便会崩溃,无法处理其他任何请求。所以同步阻塞式io肯定是不能满足互联网领域高并发的需求的。
下面给出一个阻塞式io的服务端程序示例:
刚才提到,阻塞式io的主要问题是,调用recv接收客户端请求时会导致线程阻塞,无法处理其他客户端请求。那么我们不难想到,既然调用recv会使线程阻塞,那么我们多开几个几个线程不就好了,让那些没有阻塞的线程去处理其他客户端的请求。
我们将阻塞式io处理请求的步骤改造下:
改造后,我们用一个线程去做accept,也就是获取已经建立的连接,我们称这个线程为主线程。然后获取到的每个连接开一个新的线程去处理,这样就能够将阻塞的部分放到新的线程,达到不阻塞主线程的目的,主线程仍然可以继续接收其他客户端的连接并开新的线程去处理。这个方案对高并发服务器来说是一个可行的方案,此外我们还可以使用线程池等手段来继续优化,减少线程建立和销毁的开销。
将阻塞式io改为多线程io:
我们刚才提到多线程可以解决并发问题,然而redis6.0之前使用的是单线程来处理,之所以用单线程,官方给的答复是redis的瓶颈不在cpu,既然不在cpu那么用单线程可以降低系统的复杂度,避免线程同步等问题。如何在一个线程中非阻塞地处理多个socket,进而实现多个客户端的并发处理呢,那就要借助io多路复用了。
io多路复用是操作系统提供的另一种io机制,这种机制可以实现在一个线程中监控多个socket,返回可读或可写的socket,当一个socket可读或可写时再去操作它,这样就避免了对某个socket的源码编辑器少儿编程入口阻塞等待。
将多线程io改为io多路复用:
什么是事件驱动的io模型(Reactor)
这里只讨论redis用到的单线程Reactor模型
事件驱动的io模型并不是一个具体的调用,而是高并发服务器的一种抽象的编程模式。
在Reactor模型中,有三种事件:
与这三种事件对应的,有三种handler,负责处理对应的事件。我们在一个主循环中不断判断是否有事件到来(一般通过io多路复用获取事件),有事件到来就调用对应的handler去处理时间。
听着玄乎,实际上也就这一张图:
事件驱动的io模型在redis中的实现
以下提及的源码版本为 5.0.8
文字的苍白的,建议参照本文最后的方法下载代码,自己调试下
整体框架
redis-server的main方法在 src/server.c 最后,在main方法中,首先进行一系列的初始化操作,最后进入进入Reactor模型的主循环中:
主循环在aeMain函数中,aeMain函数传入的参数 server.el ,是一个 aeEventLoop 类型的全局变量,保存了主循环的一些状态信息,包括需要处理的读写事件、时间事件列表,epoll相关信息,回调函数等。
aeMain函数中,我们可以看到当 eventLoop->stop 标志位为0时,while循环中的内容会被重复执行,每次循环首先会调用beforesleep回调函数,然后处理时间。beforesleep函数在main函数中被注册,会进行集群状态更新、AOF落盘等任务。
之所以叫beforesleep,是因为aeProcessEvents函数中包含了获取事件和处理事件的逻辑,其中获取读写事件时通过epoll_wait实现,会将线程阻塞。
在aeProcessEvents函数中,处理读写事件和时间事件,参数flags定义了需要处理的cf无后座辅助怎么写源码事件类型,我们可以暂时忽略这个参数,认为读写时间都需要处理。
aeProcessEvents函数的逻辑可以分为三个部分,首先获取距离最近的时间事件,这一步的目的是为了确定epoll_wait的超时时间,并不是实际处理时间事件。
第二个部分为获取读写事件并处理,首先调用epoll_wait,获取需要处理的读写事件,超时时间为第一步确定的时间,也就是说,如果在超时时间内有读写事件到来,那么处理读写时间,如果没有读写时间就阻塞到下一个时间事件到来,去处理时间事件。
第三个部分为处理时间事件。
事件注册与获取
上面我们讲了整体框架,了解了主循环的大致流程。接下来我们来看其中的细节,首先是读写事件的注册与获取。
redis将读、写、连接事件用结构aeFileEvent表示,因为这些事件都是通过epoll_wait获取的。
事件的具体类型通过mask标志位来区分。aeFileEvent还保存了事件处理的回调函数指针(rfileProc、wfileProc)和需要读写的数据指针(clientData)。
既然读写事件是通过epoll io多路复用实现,那么就避不开epoll的三部曲 epoll_create epoll_ctrl epoll_wait,接下来我们看下redis对epoll接口的封装。
我们之前提到aeMain函数的参数是一个 aeEventLoop 类型的全局变量,aeEventLoop中保存了epoll文件描述符和epoll事件。在aeApiCreate函数(src/ae_epoll.c)中,会调用epoll_create来创建初始化epoll文件描述符和epoll事件,调用关系为 main -> initServer -> aeCreateEventLoop -> aeApiCreate
调用epoll_create创建epoll后,就可以添加需要监控的文件描述符了,需要监控的码支付系统源码免挂版情形有三个,一是监控新的客户端连接连接请求,二是监控客户端发送指令,也就是读事件,三是监控客户端写事件,也就是处理完了请求写回结果。
这三种情形在redis中被抽象为文件事件,文件事件通过函数aeCreateFileEvent(src/ae.c)添加,添加一个文件事件主要包含三个步骤,通过epoll_ctl添加监控的文件描述符,指定回调函数和指定读写缓冲区。
最后是通过epoll_wait来获取事件,上文我们提到,在每次主循环中,首先根据最近到达的时间事件来计算epoll_wait的超时时间,然后调用epoll_wait获取事件,再处理事件,其中获取事件在函数aeApiPoll(src/ae_epoll.c)中。
获取到事件后,主循环中会逐个调用事件的回调函数来处理事件。
读写事件的实现
写累了,有空补上……
如何使用vscode调试redis源码
编译出二进制程序
这一步有可能报错:
jemalloc是内存分配的一种更高效的实现,用于代替libc的默认实现。这里报错找不到jemalloc,我们只需要将其替换成libc默认实现就好:
如果报错:
我们可以在src目录找到一个脚本名为mkreleasehdr.sh,其中包含创建release.h的逻辑,将报错信息网上翻可以发现有一行:
看来是这个脚本没有执行权限,导致release.h没有成功创建,我们需要给这个脚本添加执行权限然后重新编译:
2. 创建调试配置(vscode)
创建文件 .vscode/launch.json,并填入以下内容:
然后就可以进入调试页面打断点调试了,main函数在 src/server.c
redis源码学习-quicklist篇
Redis源码中的quicklist是ziplist优化版的双端链表,旨在提高内存效率和操作效率。ziplist虽然内存使用率高,但查找和增删操作的最坏时间复杂度可能达到O(n^2),这与Redis高效数据处理的要求不符。quicklist通过每个节点独立的ziplist结构,降低了更新复杂度,同时保持了内存使用率。
quicklist的基本结构包括:头节点(head)、尾节点(tail)、entry总数(count)、节点总数(len)、容量指示(fill)、压缩深度(compress)、以及用于内存管理的bookmarks。节点结构包括双向链表的prev和next,ziplist的引用zl,ziplist的字节数sz、item数count、以及ziplist类型(raw或lzf压缩)和尝试压缩标志(attempted_compress)。
核心操作函数如create用于初始化节点,insert则根据需求执行头插法或尾插法。delete则简单地从链表中移除节点,释放相关内存。quicklist的优化重点在于ziplist,理解了ziplist的工作原理,quicklist的数据结构理解就相对容易了。
Redis 源码分析字典(dict)
Redis 的内部字典世界:从哈希表到高效管理的深度解析
Redis,作为开源的高性能键值存储系统,其内部实现的字典数据结构是其核心组件之一。这个数据结构采用自定义的哈希表——dictEntry,巧妙地存储和管理着键值对。让我们一起深入理解这一强大工具的运作机制。
首先,Redis的字典是基于哈希表的,通过哈希函数将键转换为数组索引,实现高效查找。dictEntry结构巧妙地封装了键(key)、值(value)以及指向下一个节点的指针,构成了数据存储的基本单元。同时,dict包含一系列操作函数,包括哈希计算、键值复制、比较以及销毁操作,这些函数的指针类型(dictType)和实际数据结构共同构建了其高效性能。
在字典的管理中,rehash是一个关键概念,它标志着哈希表的重新分布过程。rehash标志是一个计数器,用于跟踪当前哈希表实例的状态,确保在负载过高时进行扩容。当ht_used[0]非零,且满足特定条件(如元素数量超过初始桶数),服务器会触发resize操作,这通常在serverCron定时任务中进行,以避免磁盘I/O竞争。
rehash过程中,Redis采取渐进式策略,通过dictRehash函数,逐个移动键值对到新哈希表,确保操作的线程安全。为了避免长时间阻塞,这个过程被分散到函数中,并通过serverCron定时任务,以毫秒级的步长进行,确保在无磁盘写操作时进行。
在处理过期键时,dictRehashMilliseconds()函数扮演重要角色,它在rehash时监控时间消耗,确保性能。rehash过程中,dictAdd负责插入新哈希表,而dictFind和dictDelete则需处理ht_table[0]和ht_table[1]的键值对。
Redis的默认哈希算法采用SipHash,保证了数据的分布均匀性。在持久化时,负载因子默认设置为5,而rehash后,数据结构会采用迭代器的形式,分为安全和非安全两种,以满足不同场景的需求。
在实际操作中,如keysCommand,会选择安全模式以避免重复遍历,而在处理大规模数据时,如scan命令,可能需要使用非安全模式,但需注意可能带来的问题。
总的来说,Redis的字典数据结构是其高效性能的基石,通过精细的哈希管理、rehash策略以及迭代器设计,确保了在高并发和频繁操作下的稳定性和性能。深入理解这些内部细节,对于优化Redis性能和应对复杂应用场景至关重要。
Redis源码阅读(1)——zmalloc
zmalloc是一个简化内存分配的库,包含以下API函数:zmalloc
zcalloc
zrealloc
zfree
zstrdup
zmalloc_used_memory
zmalloc_set_oom_handler
zmalloc_get_rss
zmalloc_get_allocator_info
zmalloc_get_private_dirty
zmalloc_get_smap_bytes_by_field
zmalloc_get_memory_size
zlibc_free
其中,zmalloc用于分配内存,zcalloc在分配内存的同时初始化为0,zrealloc用于重新分配内存,zfree用于释放内存,zstrdup用于复制字符串并分配内存,zmalloc_used_memory用于获取已分配内存的大小,zmalloc_set_oom_handler用于设置内存溢出处理器,zmalloc_get_rss用于获取当前进程的内存使用量,zmalloc_get_allocator_info用于获取分配器信息,zmalloc_get_private_dirty用于获取私有脏数据,zmalloc_get_smap_bytes_by_field用于获取指定字段的内存使用量,zmalloc_get_memory_size用于获取内存大小,zlibc_free用于释放内存。 在zmalloc中,宏函数update_zmalloc_stat_alloc用于更新used_memory的值。这个宏函数中的if语句用于补齐分配的内存字节数到sizeof(long),但是我不太理解5.0源码中为什么atomicIncr使用的是__n而不是直接对_n进行操作。测试发现,used_memory的值并未对齐到8,那么if语句的存在意义何在呢? 同样地,update_zmalloc_stat_free宏函数用于更新已释放内存的统计信息。与update_zmalloc_stat_alloc相比,虽然malloc_usable_size已经返回精确的字节数,但update_zmalloc_stat_alloc为何不直接使用atomicIncr更新used_memory呢?在Unstable分支中,已有开发者对此进行了优化。Redis 源码剖析 3 -- redisCommand
Redis 使用 redisCommand 结构体处理命令请求,其内包含一个指向对应处理函数的 proc 指针。redisCommandTable 是一个存储所有 Redis 命令的数组,位于 server.c 文件中。此数组通过 populateCommandTable() 函数填充,该函数将 redisCommandTable 的内容添加到 server.commands 字典,将 Redis 支持的所有命令及其实现整合。
populateCommandTable() 函数中包含 populateCommandTableParseFlags() 子函数,用于将 sflags 字符串转换为对应的 flags 值。lookupCommand*() 函数族负责从 server.commands 中查找相应的命令。
Redis源码从哪里读起?
如果你正寻求理解Redis源码的路径,本文为你提供了一个全面的指南。Redis 是使用 C 语言构建的,因此,我们从 main 函数开始,深入探索其核心逻辑。在阅读过程中,我们应聚焦于从外部命令输入到内部执行流程的路径,逐步理解 Redis 的工作原理。
理解事件机制对于深入 Redis 的核心至关重要。通过 Redis 的事件循环,我们可以实现单线程环境下的高效处理多任务的能力。这一机制允许 Redis 以线程安全的方式处理大量请求,同时在执行后台任务时保持响应速度。事件循环与系统提供的异步 I/O 多路复用机制相结合,确保了 CPU 资源的高效利用,避免了并发执行的复杂性。
在讨论事件循环时,我们重点关注了两个阶段:初始化和事件处理。初始化阶段涉及配置和数据加载,而事件处理阶段则负责响应客户端请求、执行命令以及周期性任务的调度。通过事件循环,Redis 实现了在单一线程下处理多个请求的高效运行模式。
理解 Redis 命令请求的处理流程是整个指南的关键部分。当客户端向 Redis 发送命令时,流程分为两个阶段:连接建立和命令执行与响应。连接建立阶段由事件循环触发,而命令执行与响应阶段则涉及读取客户端发送的数据,执行命令并返回结果。这一过程通过特定的回调函数实现,确保了命令处理的高效和线程安全。
此外,我们还讨论了 Redis 的事件机制,即事件驱动程序库 ae.c,它在不同操作系统上支持多种 I/O 多路复用机制。在选择底层机制时,Redis 优先考虑后三种更现代、高效的方案,例如 macOS 上的 kqueue 和 Linux 上的 epoll。理解这些机制对于实现高性能网络服务至关重要。
为了帮助读者在阅读 Redis 源码时构建清晰的思维路径,我们提供了一个树型图展示关键函数之间的调用关系。这张图基于 Redis 源码的 5.0 分支,详细地展示了初始化、事件处理、命令请求处理等关键流程的调用顺序。
最后,本文提供的参考文献旨在为读者提供进一步学习的资源。对于希望深入理解 Redis 源码并学习 C 语言编程经验的读者,这些资源将起到重要作用。总的来说,本文旨在为那些希望从源头上理解 Redis 工作机制的技术爱好者提供一个全面、系统化的指南。