欢迎来到【dll木马 vc源码】【国内源码平台有哪些】【安卓11系统源码导入】linux accept源码-皮皮网网站!!!

皮皮网

【dll木马 vc源码】【国内源码平台有哪些】【安卓11系统源码导入】linux accept源码-皮皮网 扫描左侧二维码访问本站手机端

【dll木马 vc源码】【国内源码平台有哪些】【安卓11系统源码导入】linux accept源码

2025-01-06 09:49:00 来源:{typename type="name"/} 分类:{typename type="name"/}

1.服务器通信模型(一): socket编程中accept函数的深层探究
2.LinuxC编程建立TCP连接linuxctcp
3.linux网络编程中的errno处理
4.从Linux源码看Socket(TCP)的listen及连接队列
5.linuxcommit
6.从 Linux源码 看 Socket(TCP)的accept

linux accept源码

服务器通信模型(一): socket编程中accept函数的深层探究

       本文将深入探讨服务器通信模型中的关键函数accept在socket编程中的作用。首先,通过回顾socket编程基础,理解TCP客户端的基本工作流程,并通过Python示例来演示accept函数的工作原理。在服务器端,dll木马 vc源码原始socket(s)调用accept生成新的socket(ns),ns负责后续的消息收发,而s则负责监听和连接的管理。

       通过Python代码和netstat命令观察,ns和s的文件描述符不同,代表了不同的功能。s处于LISTENING状态,等待连接,而ns处于ESTABLISHED状态,用于实际的通信。ns的“外部地址”反映了它与特定客户端的连接,而非整个互联网。

       重要的是,s不能进行消息收发或连接其他服务器,因为它的状态不允许。ns也不能通过bind和listen创建新的socket,因为这与它的功能不符。ns使用的是独立的端口,避免了端口资源的浪费和防火墙问题。

       总结来说,accept函数是socket编程中的关键环节,它确保了服务器的国内源码平台有哪些高效连接管理和数据交换。后续文章将探讨更复杂的通信模型,如Reactor和Proactor模式,以及Linux的IO多路复用模型,如Select、Poll、Epoll,以及Netty和Redis的网络通信模型。

       参考文章: socket的accept函数解析以及服务器和多个客户端的端口问题

       系列文章:

       服务器通信模型(一): socket编程中accept函数的深层探究

       服务器通信模型(二): Reactor与Proactor 模式

       服务器通信模型(三): Linux的IO多路复用模型——Select、Poll、Epoll

       服务器通信模型(四): Netty线程模型及其模拟实现

       服务器通信模型(五): Redis的网络通信模型

LinuxC编程建立TCP连接linuxctcp

       Linux C编程:建立 TCP连接

       Linux C编程中使用TCP(Transmission Control Protocol,传输控制协议)协议建立客户端和服务器之间连接的过程称之为TCP连接,是一种可靠而强大的通信协议,在Linux C编程中可用于建立数据库、网络通信等等。本文介绍了在Linux C编程中如何建立TCP连接,以及其中遇到的一些问题。

       在Linux C语言编程中,可以使用socket()函数建立一个TCP连接。socket()函数的第一个参数指定协议族,例如AF_INET指定IPV4协议族,第二个参数指定套接字类型,例如SOCK_STREAM指定流式套接字。

       接下来,可以使用bind()函数将套接字与系统分配的IP地址和端口绑定,然后使用listen()函数使套接字变为被动模式,并启动监听进程,此时服务器已准备就绪,安卓11系统源码导入等待客户端的连接。最后,使用accept()函数接受客户端的连接,当接受到客户端的连接后,服务器就可以使用建立的socket与客户端通信了。

       示例代码如下:

       // 创建 socket

       int sockfd;

       struct sockaddr_in addr;

       // AF_INET: IPV4 协议族

       // SOCK_STREAM: 流式套接字

       sockfd = socket(AF_INET, SOCK_STREAM, 0);

       // 设置 IP 地址

       addr.sin_family = AF_INET;

       addr.sin_port = htons(); //端口号

       addr.sin_addr.s_addr = inet_addr(“.0.0.1”); //IP地址

       // 绑定 IP 和 端口

       bind(sockfd, (struct sockaddr*)&addr, sizeof(addr));

       // 监听客户端请求

       listen(sockfd, );

       // 接受 客户端连接请求

       struct sockaddr_in client_addr;

       socklen_t client_addr_len;

       int client_fd = accept(sockfd, (struct sockaddr*)&client_addr,

       &client_addr_len);

       上述步骤完成后,客户端和服务器的TCP连接建立完毕。在Linux C编程中,使用TCP协议建立客户端和服务器之间连接过程虽然繁琐,但是它可以实现可靠的数据传输和优秀的网络通信,这个代价值得支付。

       总而言之,在Linux C编程中使用TCP协议建立客户端和服务器之间连接,可以通过socket()、bind()、listen()、accept()等函数将客户端和服务器建立可靠的数据传输连接,这是一个蛮耗时的过程,但也值得支付,因为通过这种方式可以实现稳定的网络通信。

linux网络编程中的errno处理

       在 Linux 网络编程的深度探索中,errno变量作为关键组件,扮演着记录系统调用错误代码的隐形守卫。理解并妥善处理errno,无疑能提升代码的稳定性和调试效率。让我们分三个关键阶段,深入了解errno在accept和connect操作中的商家怎样生成溯源码码角色及其错误处理策略:

       1. Accept阶段:

EAGAINEWOULDBLOCK: 系统请求暂时中断,重试是明智之举。遇到这类错误,libevent提供了 EVUTIL_ERR_ACCEPT_RETRIABLE宏,用于处理这些可重试的异常。

ECONNABORTED: 连接被意外终止,可能需要检查并决定是否重试。

EINVAL: 套接字问题,务必仔细检查并修复。

       2. Connect阶段:

EINPROGRESS: 连接正在进行中,耐心等待直到完成。遇到此错误,通常选择I/O多路复用函数(如select、poll或epoll)来监控。

EALREADY: 连接已存在,需要检查并处理这种情况。

       每个阶段,我们都会遇到特定的errno码,关键在于识别错误类型并采取相应的行动,是忽略还是处理,这将决定代码的健壮性。

       示例代码精简:

       在 bufferevent_writecb 函数的实现中,错误处理变得尤为重要。当遇到可重试的错误,如 EINTREAGAIN,libevent 提供的 EVUTIL_ERR_RW_RETRIABLE会自动处理。非忽略的错误,如连接被拒绝(EVUTIL_ERR_CONNECT_REFUSED),上海教学直播系统源码下载则可能触发特定的回调或者进行错误处理,如下所示:

       strong>static void bufferevent_writecb(short event, void *arg) {

        ...

        if (!EVUTIL_ERR_RW_RETRIABLE(err)) {

        // 非可重试错误处理

        ...

        } else if (EVUTIL_ERR_CONNECT_REFUSED(err)) {

        // 连接被拒绝处理

        ...

        } else {

        // 其他错误,可能需要重试或记录

        goto reschedule;

        }

       }

       这段代码简洁地展示了如何在 libevent 的上下文中,优雅地处理这些常见的网络错误情况。

       通过理解并有效利用errno,网络编程的错误处理将变得更加从容,确保了代码的稳定性和用户体验的提升。

从Linux源码看Socket(TCP)的listen及连接队列

       了解Linux内核中Socket (TCP)的"listen"及连接队列机制是深入理解网络编程的关键。本文将基于Linux 3.内核版本,从源码角度解析Server端Socket在进行"listen"时的具体实现。

       建立Server端Socket需要经历socket、bind、listen、accept四个步骤。本文聚焦于"listen"步骤,深入探讨其内部机理。

       通过socket系统调用,我们可以创建一个基于TCP的Socket。这里直接展示了与TCP Socket相关联的操作函数。

       接着,我们深入到"listen"系统调用。注意,glibc的INLINE_SYSCALL对返回值进行了封装,仅保留0和-1两种结果,并将错误码的绝对值记录在errno中。其中,backlog参数至关重要,设置不当会引入隐蔽的陷阱。对于Java开发者而言,框架默认backlog值较小(默认),这可能导致微妙的行为差异。

       进入内核源码栈,我们发现内核对backlog值进行了调整,限制其不超过内核参数设置的somaxconn值。

       核心调用程序为inet_listen。其中,除了fastopen外的逻辑(fastopen将在单独章节深入讨论)最终调用inet_csk_listen_start,将sock链入全局的listen hash表,实现对SYN包的高效处理。

       值得注意的是,SO_REUSEPORT特性允许不同Socket监听同一端口,实现内核级的负载均衡。Nginx 1.9.1版本启用此功能后,性能提升3倍。

       半连接队列与全连接队列是连接处理中的关键组件。通常提及的sync_queue与accept_queue并非全貌,sync_queue实际上是syn_table,而全连接队列为icsk_accept_queue。在三次握手过程中,这两个队列分别承担着不同角色。

       在连接处理中,除了qlen与sk_ack_backlog计数器外,qlen_young计数器用于特定场景下的统计。SYN_ACK的重传定时器在内核中以ms为间隔运行,确保连接建立过程的稳定。

       半连接队列的存在是为抵御半连接攻击,避免消耗大量内存资源。通过syn_cookie机制,内核能有效防御此类攻击。

       全连接队列的最大长度受到限制,超过somaxconn值的连接会被内核丢弃。若未启用tcp_abort_on_overflow特性,客户端可能在调用时才会察觉到连接被丢弃。启用此特性或增大backlog值是应对这一问题的策略。

       backlog参数对半连接队列容量产生影响,导致内核发送cookie校验时出现常见的内存溢出警告。

       总结而言,TCP协议在数十年的演进中变得复杂,深入阅读源码成为分析问题的重要途径。本文深入解析了Linux内核中Socket (TCP)的"listen"及连接队列机制,旨在帮助开发者更深入地理解网络编程。

linuxcommit

       linux6.0修改防火墙设置?

       æ”¹Linux系统防火墙配置需要修改/etc/sysconfig/iptables这个文件

       vim/etc/sysconfig/iptables

       åœ¨vim编辑器,会看到下面的内容

       #Firewallconfigurationwrittenbysystem-config-firewall

       #Manualcustomizationofthisfileisnotrecommended.

       *filter

       :INPUTACCEPT

       :FORWARDACCEPT

       :OUTPUTACCEPT

       -AINPUT-mstate--stateESTABLISHED,RELATED-jACCEPT

       -AINPUT-picmp-jACCEPT

       -AINPUT-ilo-jACCEPT

       -AINPUT-mstate--stateNEW-mtcp-ptcp--dport-jACCEPT

       -AINPUT-mstate--stateNEW-mtcp-ptcp--dport-jACCEPT

       -AINPUT-mstate--stateNEW-mtcp-ptcp--dport-jACCEPT

       -AINPUT-mstate--stateNEW-mtcp-ptcp--dport-jACCEPT

       -AINPUT-jREJECT--reject-withicmp-host-prohibited

       -AFORWARD-jREJECT--reject-withicmp-host-prohibited

       COMMIT

       éœ€è¦å¼€æ”¾ç«¯å£ï¼Œè¯·åœ¨é‡Œé¢æ·»åŠ ä¸€æ¡ä¸€ä¸‹å†…容即可:

       -ARH-Firewall-1-INPUT-mstate--stateNEW-mtcp-ptcp--dport-jACCEPT

       å…¶ä¸­æ˜¯è¦å¼€æ”¾çš„端口号,然后重新启动linux的防火墙服务。

       Linux下停止/启动防火墙服务的命令(root用户使用):

       serviceiptablesstop--停止

       serviceiptablesstart--启动

       å†™åœ¨æœ€åŽ:

       #永久性生效,重启后不会复原

       chkconfigiptableson#开启

       chkconfigiptablesoff#关闭

       #即时生效,重启后复原

       serviceiptablesstart#开启

       serviceiptablesstop#关闭

从 Linux源码 看 Socket(TCP)的accept

       从 Linux 源码角度探究 Server 端 Socket 的 Accept 过程(基于 Linux 3. 内核),以下是一系列关键步骤的解析。

       创建 Server 端 Socket 需依次执行 socket、bind、listen 和 accept 四个步骤。其中,socket 系统调用创建了一个 SOCK_STREAM 类型的 TCP Socket,其操作函数为 TCP Socket 所对应的 ops。在进行 Accept 时,关键在于理解 Accept 的功能,即创建一个新的 Socket 与对端的 connect Socket 进行连接。

       在具体实现中,核心函数 sock->ops->accept 被调用。关注 TCP 实现即 inet_stream_ops->accept,其进一步调用 inet_accept。核心逻辑在于 inet_csk_wait_for_connect,用于管理 Accept 的超时逻辑,避免在超时时惊群现象的发生。

       EPOLL 的实现中,"惊群"现象是由水平触发模式下 epoll_wait 重新塞回 ready_list 并唤醒多个等待进程导致的。虽然 epoll_wait 自身在有中断事件触发时不惊群,但水平触发机制仍会造成类似惊群的效应。解决此问题,通常采用单线程专门处理 accept,如 Reactor 模式。

       针对"惊群"问题,Linux 提供了 so_reuseport 参数,允许多个 fd 监听同一端口号,内核中进行负载均衡(Sharding),将 accept 任务分散到不同 Socket 上。这样,可以有效利用多核能力,提升 Socket 分发能力,且线程模型可改为多线程 accept。

       在 accept 过程中,accept_queue 是关键成员,用于填充添加待处理的连接。用户线程通过 accept 系统调用从队列中获取对应的 fd。值得注意的是,当用户线程未能及时处理时,内核可能会丢弃三次握手成功的连接,导致某些意外现象。

       综上所述,理解 Linux Socket 的 Accept 过程需要深入源码,关注核心函数与机制,以便优化 Server 端性能,并有效解决"惊群"等问题,提升系统处理能力。

ACCEPT()函数

       accept()函数在基于连接的套接字类型,如SOCK_STREAM和SOCK_SEQPACKET中发挥关键作用。它的工作原理是,从监听套接字的连接队列中获取第一个连接请求,创建新的套接字,并返回指向该新套接字的文件描述符。新套接字独立于原始监听套接字,可以独立进行数据发送和接收。

       要使用accept(),首先需要一个通过socket()创建并绑定到本地地址(通常为服务器地址)的套接字,然后使用listen()功能使其处于监听状态。接受连接时,需要提供一个struct sockaddr指针addr,指向通讯层服务器对等地址,其格式取决于套接字类型。addrlen参数则需要初始化为addr结构的大小,以便接收实际的地址信息。

       如果连接队列为空或套接字设置为非阻塞模式且无连接,accept()会阻塞等待,直到连接出现。它通常作为阻塞函数,通过select()或poll()来检测套接字是否有新的连接。接收到连接后,accept()返回一个新套接字的描述符,如果出错,返回-1并设置errno。

       Linux中的accept()会将网络错误传递给新连接,而其他BSD实现有所不同。为了保证正常运行,应在accept()之后检查并处理可能出现的协议错误,如ENETDOWN、EPROTO等,并在必要时重试。