欢迎来到皮皮网网站!

【limx源码】【csdn素材下载源码】【博客自动收录源码】jdk 源码 hashmap

时间:2025-01-08 12:53:32 来源:开源看板网站源码

1.HashMap为什么不安全?
2.JDK成长记7:3张图搞懂HashMap底层原理!
3.一文带你读懂HashMap的原理和结构
4.concurrenthashmap1.8源码如何详细解析?
5.HashMap 的初始值和最大值和扩容因子
6.hashmap底层实现原理

jdk 源码 hashmap

HashMap为什么不安全?

       æˆ‘们都知道HashMap是线程不安全的,在多线程环境中不建议使用,但是其线程不安全主要体现在什么地方呢,本文将对该问题进行解密。

       1.jdk1.7中的HashMap

       åœ¨jdk1.8中对HashMap做了很多优化,这里先分析在jdk1.7中的问题,相信大家都知道在jdk1.7多线程环境下HashMap容易出现死循环,这里我们先用代码来模拟出现死循环的情况:

       public class HashMapTest {     public static void main(String[] args) {         HashMapThread thread0 = new HashMapThread();        HashMapThread thread1 = new HashMapThread();        HashMapThread thread2 = new HashMapThread();        HashMapThread thread3 = new HashMapThread();        HashMapThread thread4 = new HashMapThread();        thread0.start();        thread1.start();        thread2.start();        thread3.start();        thread4.start();    }}class HashMapThread extends Thread {     private static AtomicInteger ai = new AtomicInteger();    private static Map map = new HashMap<>();    @Override    public void run() {         while (ai.get() < ) {             map.put(ai.get(), ai.get());            ai.incrementAndGet();        }    }}

       ä¸Šè¿°ä»£ç æ¯”较简单,就是开多个线程不断进行put操作,并且HashMap与AtomicInteger都是全局共享的。

       åœ¨å¤šè¿è¡Œå‡ æ¬¡è¯¥ä»£ç åŽï¼Œå‡ºçŽ°å¦‚下死循环情形:

       å…¶ä¸­æœ‰å‡ æ¬¡è¿˜ä¼šå‡ºçŽ°æ•°ç»„越界的情况:

       è¿™é‡Œæˆ‘们着重分析为什么会出现死循环的情况,通过jps和jstack命名查看死循环情况,结果如下:

       ä»Žå †æ ˆä¿¡æ¯ä¸­å¯ä»¥çœ‹åˆ°å‡ºçŽ°æ­»å¾ªçŽ¯çš„位置,通过该信息可明确知道死循环发生在HashMap的扩容函数中,根源在transfer函数中,jdk1.7中HashMap的transfer函数如下:

       void transfer(Entry[] newTable, boolean rehash) {         int newCapacity = newTable.length;        for (Entry e : table) {             while(null != e) {                 Entry next = e.next;                if (rehash) {                     e.hash = null == e.key ? 0 : hash(e.key);                }                int i = indexFor(e.hash, newCapacity);                e.next = newTable[i];                newTable[i] = e;                e = next;            }        }    }

       æ€»ç»“下该函数的主要作用:

       åœ¨å¯¹table进行扩容到newTable后,需要将原来数据转移到newTable中,注意-行代码,这里可以看出在转移元素的过程中,使用的是头插法,也就是链表的顺序会翻转,这里也是形成死循环的关键点。

       ä¸‹é¢è¿›è¡Œè¯¦ç»†åˆ†æžã€‚

       1.1 扩容造成死循环分析过程

       å‰ææ¡ä»¶ï¼Œè¿™é‡Œå‡è®¾ï¼š

       hash算法为简单的用key mod链表的大小。

       æœ€å¼€å§‹hash表size=2,key=3,7,5,则都在table[1]中。

       ç„¶åŽè¿›è¡Œresize,使size变成4。

       æœªresize前的数据结构如下:

       è¯·ç‚¹å‡»è¾“入图片描述

       å¦‚果在单线程环境下,最后的结果如下:

       è¯·ç‚¹å‡»è¾“入图片描述

       è¿™é‡Œçš„转移过程,不再进行详述,只要理解transfer函数在做什么,其转移过程以及如何对链表进行反转应该不难。

       ç„¶åŽåœ¨å¤šçº¿ç¨‹çŽ¯å¢ƒä¸‹ï¼Œå‡è®¾æœ‰ä¸¤ä¸ªçº¿ç¨‹A和B都在进行put操作。线程A在执行到transfer函数中第行代码处挂起,因为该函数在这里分析的地位非常重要,因此再次贴出来。

       è¯·ç‚¹å‡»è¾“入图片描述

       æ­¤æ—¶çº¿ç¨‹A中运行结果如下:

       è¯·ç‚¹å‡»è¾“入图片描述

       çº¿ç¨‹A挂起后,此时线程B正常执行,并完成resize操作,结果如下:

       è¯·ç‚¹å‡»è¾“入图片描述

       è¿™é‡Œéœ€è¦ç‰¹åˆ«æ³¨æ„çš„点:由于线程B已经执行完毕,根据Java内存模型,现在newTable和table中的Entry都是主存中最新值:7.next=3,3.next=null。

       æ­¤æ—¶åˆ‡æ¢åˆ°çº¿ç¨‹A上,在线程A挂起时内存中值如下:e=3,next=7,newTable[3]=null,代码执行过程如下:

newTable[3]=e ----> newTable[3]=3e=next ----> e=7

       æ­¤æ—¶ç»“果如下:

       è¯·ç‚¹å‡»è¾“入图片描述

       ç»§ç»­å¾ªçŽ¯ï¼š

e=7next=e.next ----> next=3【从主存中取值】e.next=newTable[3] ----> e.next=3【从主存中取值】newTable[3]=e ----> newTable[3]=7e=next ----> e=3

       ç»“果如下:

       è¯·ç‚¹å‡»è¾“入图片描述

       å†æ¬¡è¿›è¡Œå¾ªçŽ¯ï¼š

e=3next=e.next ----> next=nulle.next=newTable[3] ----> e.next=7 å³ï¼š3.next=7newTable[3]=e ----> newTable[3]=3e=next ----> e=null

       æ³¨æ„æ­¤æ¬¡å¾ªçŽ¯ï¼še.next=7,而在上次循环中7.next=3,出现环形链表,并且此时e=null循环结束。

       ç»“果如下:

       è¯·ç‚¹å‡»è¾“入图片描述

       åœ¨åŽç»­æ“ä½œä¸­åªè¦æ¶‰åŠè½®è¯¢hashmap的数据结构,就会在这里发生死循环,造成悲剧。

       1.2 扩容造成数据丢失分析过程

       éµç…§ä¸Šè¿°åˆ†æžè¿‡ç¨‹ï¼Œåˆå§‹æ—¶ï¼š

       è¯·ç‚¹å‡»è¾“入图片描述

       çº¿ç¨‹A和线程B进行put操作,同样线程A挂起:

       è¯·ç‚¹å‡»è¾“入图片描述

       æ­¤æ—¶çº¿ç¨‹A的运行结果如下:

       è¯·ç‚¹å‡»è¾“入图片描述

       æ­¤æ—¶çº¿ç¨‹B已获得CPU时间片,并完成resize操作:

       è¯·ç‚¹å‡»è¾“入图片描述

       åŒæ ·æ³¨æ„ç”±äºŽçº¿ç¨‹B执行完成,newTable和table都为最新值:5.next=null。

       æ­¤æ—¶åˆ‡æ¢åˆ°çº¿ç¨‹A,在线程A挂起时:e=7,next=5,newTable[3]=null。

       æ‰§è¡Œnewtable[i]=e,就将7放在了table[3]的位置,此时next=5。接着进行下一次循环:

e=5next=e.next ----> next=null,从主存中取值e.next=newTable[1] ----> e.next=5,从主存中取值newTable[1]=e ----> newTable[1]=5e=next ----> e=null

       å°†5放置在table[1]位置,此时e=null循环结束,3元素丢失,并形成环形链表。并在后续操作hashmap时造成死循环。

       è¯·ç‚¹å‡»è¾“入图片描述

       2.jdk1.8中HashMap

       åœ¨jdk1.8中对HashMap进行了优化,在发生hash碰撞,不再采用头插法方式,而是直接插入链表尾部,因此不会出现环形链表的情况,但是在多线程的情况下仍然不安全,这里我们看jdk1.8中HashMap的put操作源码:

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,                   boolean evict) {         Node[] tab; Node p; int n, i;        if ((tab = table) == null || (n = tab.length) == 0)            n = (tab = resize()).length;        if ((p = tab[i = (n - 1) & hash]) == null) // å¦‚果没有hash碰撞则直接插入元素            tab[i] = newNode(hash, key, value, null);        else {             Node e; K k;            if (p.hash == hash &&                ((k = p.key) == key || (key != null && key.equals(k))))                e = p;            else if (p instanceof TreeNode)                e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);            else {                 for (int binCount = 0; ; ++binCount) {                     if ((e = p.next) == null) {                         p.next = newNode(hash, key, value, null);                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st                            treeifyBin(tab, hash);                        break;                    }                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k))))                        break;                    p = e;                }            }            if (e != null) {  // existing mapping for key                V oldValue = e.value;                if (!onlyIfAbsent || oldValue == null)                    e.value = value;                afterNodeAccess(e);                return oldValue;            }        }        ++modCount;        if (++size > threshold)            resize();        afterNodeInsertion(evict);        return null;    }

       è¿™æ˜¯jdk1.8中HashMap中put操作的主函数, 注意第6行代码,如果没有hash碰撞则会直接插入元素。

       å¦‚果线程A和线程B同时进行put操作,刚好这两条不同的数据hash值一样,并且该位置数据为null,所以这线程A、B都会进入第6行代码中。

       å‡è®¾ä¸€ç§æƒ…况,线程A进入后还未进行数据插入时挂起,而线程B正常执行,从而正常插入数据,然后线程A获取CPU时间片,此时线程A不用再进行hash判断了,问题出现:线程A会把线程B插入的数据给覆盖,发生线程不安全。

       æ€»ç»“

       é¦–å…ˆHashMap是线程不安全的,其主要体现:

       åœ¨jdk1.7中,在多线程环境下,扩容时会造成环形链或数据丢失。

       åœ¨jdk1.8中,在多线程环境下,会发生数据覆盖的情况。

JDK成长记7:3张图搞懂HashMap底层原理!

       一句话讲, HashMap底层数据结构,JDK1.7数组+单向链表、JDK1.8数组+单向链表+红黑树。limx源码

       在看过了ArrayList、LinkedList的底层源码后,相信你对阅读JDK源码已经轻车熟路了。除了List很多时候你使用最多的还有Map和Set。接下来我将用三张图和你一起来探索下HashMap的底层核心原理到底有哪些?

       首先你应该知道HashMap的核心方法之一就是put。我们带着如下几个问题来看下图:

       如上图所示,put方法调用了putVal方法,之后主要脉络是:

       如何计算hash值?

       计算hash值的算法就在第一步,对key值进行hashCode()后,对hashCode的值进行无符号右移位和hashCode值进行了异或操作。为什么这么做呢?其实涉及了很多数学知识,简单的说就是尽可能让高和低位参与运算,可以减少hash值的冲突。

       默认容量和扩容阈值是多少?

       如上图所示,很明显第二步回调用resize方法,获取到默认容量为,这个在源码里是1<<4得到的,1左移4位得到的。之后由于默认扩容因子是0.,所以两者相乘就是扩容大小阈值*0.=。之后就分配了一个大小为的Node[]数组,作为Key-Value对存放的数据结构。

       最后一问题是,如何进行hash寻址的csdn素材下载源码

       hash寻址其实就在数组中找一个位置的意思。用的算法其实也很简单,就是用数组大小和hash值进行n-1&hash运算,这个操作和对hash取模很类似,只不过这样效率更高而已。hash寻址后,就得到了一个位置,可以把key-value的Node元素放入到之前创建好的Node[]数组中了。

       当你了解了上面的三个原理后,你还需要掌握如下几个问题:

       还是老规矩,看如下图:

       当hash值计算一致,比如当hash值都是时,Key-Value对的Node节点还有一个next指针,会以单链表的形式,将冲突的节点挂在数组同样位置。这就是数据结构中所提到解决hash 的冲突方法之一:单链法。当然还有探测法+rehash法有兴趣的人可以回顾《数据结构和算法》相关书籍。

       但是当hash冲突严重的时候,单链法会造成原理链接过长,导致HashMap性能下降,因为链表需要逐个遍历性能很差。所以JDK1.8对hash冲突的算法进行了优化。当链表节点数达到8个的时候,会自动转换为红黑树,自平衡的一种二叉树,有很多特点,比如区分红和黑节点等,具体大家可以看小灰算法图解。红黑树的遍历效率是O(logn)肯定比单链表的O(n)要好很多。

       总结一句话就是博客自动收录源码,hash冲突使用单链表法+红黑树来解决的。

       上面的图,核心脉络是四步,源码具体的就不粘出来了。当put一个之后,map的size达到扩容阈值,就会触发rehash。你可以看到如下具体思路:

       情况1:如果数组位置只有一个值:使用新的容量进行rehash,即e.hash & (newCap - 1)

       情况2:如果数组位置有链表,根据 e.hash & oldCap == 0进行判断,结果为0的使用原位置,否则使用index + oldCap位置,放入元素形成新链表,这里不会和情况1新的容量进行rehash与运算了,index + oldCap这样更省性能。

       情况3:如果数组位置有红黑树,根据split方法,同样根据 e.hash & oldCap == 0进行树节点个数统计,如果个数小于6,将树的结果恢复为普通Node,否则使用index + oldCap,调整红黑树位置,这里不会和新的容量进行rehash与运算了,index + oldCap这样更省性能。

       你有兴趣的话,可以分别画一下这三种情况的图。这里给大家一个图,假设都出发了以上三种情况结果如下所示:

       上面源码核心脉络,3个if主要是校验了一堆,没做什么事情,触动精灵源码口袋之后赋值了扩容因子,不传递使用默认值0.,扩容阈值threshold通过tableSizeFor(initialCapacity);进行计算。注意这里只是计算了扩容阈值,没有初始化数组。代码如下:

       竟然不是大小*扩容因子?

       n |= n >>> 1这句话,是在干什么?n |= n >>> 1等价于n = n | n >>>1; 而|表示位运算中的或,n>>>1表示无符号右移1位。遇到这种情况,之前你应该学到了,如果碰见复杂逻辑和算法方法就是画图或者举例子。这里你就可以举个例子:假设现在指定的容量大小是,n=cap-1=,那么计算过程应该如下:

       n是int类型,java中一般是4个字节,位。所以的二进制: 。

       最后n+1=,方法返回,赋值给threshold=。再次注意这里只是计算了扩容阈值,没有初始化数组。

       为什么这么做呢?一句话,为了提高hash寻址和扩容计算的的效率。

       因为无论扩容计算还是寻址计算,都是二进制的位运算,效率很快。另外之前你还记得取余(%)操作中如果除数是2的幂次方则等同于与其除数减一的与(&)操作。即 hash%size = hash & (size-1)。这个前提条件是博客网php源码除数是2的幂次方。

       你可以再回顾下resize代码,看看指定了map容量,第一次put会发生什么。会将扩容阈值threshold,这样在第一次put的时候就会调用newCap = oldThr;使得创建一个容量为threshold的数组,之后从而会计算新的扩容阈值newThr为newCap*0.=*0.=。也就是说map到了个元素就会进行扩容。

       除了今天知识,技能的成长,给大家带来一个金句甜点,结束我今天的分享:坚持的三个秘诀之一目标化。

       坚持的秘诀除了上一节提到的视觉化,第二个秘诀就是目标化。顾名思义,就是需要给自己定立一个目标。这里要提到的是你的目标不要定的太高了。就比如你想要增加肌肉,给自己定了一个目标,每天5组,每次个俯卧撑,你看到自己胖的身形或者海报,很有刺激,结果开始前两天非常厉害,干劲十足,特别奥利给。但是第三天,你想到要个俯卧撑,你就不想起床,就算起来,可能也会把自己撅死过去......其实你的目标不要一下子定的太大,要从微习惯开始,比如我媳妇从来没有做过俯卧撑,就让她每天从1个开始,不能多,我就怕她收不住,做多了。一开始其实从习惯开始,先变成习惯,再开始慢慢加量。量太大养不成习惯,量小才能养成习惯。很容易做到才能养成,你想想是不是这个道理?

       所以,坚持的第二个秘诀就是定一个目标,可以通过小量目标,养成微习惯。比如每天你可以读五分钟书或者5分钟成长记,不要多,我想超过你也会睡着了的.....

       最后,大家可以在阅读完源码后,在茶余饭后的时候问问同事或同学,你也可以分享下,讲给他听听。

一文带你读懂HashMap的原理和结构

       本文旨在深入剖析Java中的Map类,特别是HashMap。在探索之前,我们先思考几个关键点,它们常在面试中被提及:Hash是什么,HashMap的继承关系,底层数据结构,JDK 1.8的优化,扩容机制,以及解决冲突的方法。了解这些,对你的工作或求职大有裨益。

       首先,让我们从HashMap的定义开始。HashMap是Java中的哈希表,它的目标是提供快速的查询、存储和修改性能。哈希表原理是利用hash函数将数据转换为数组的索引,从而实现快速访问。在Java中,HashMap位于`java.util`包中,其继承自`AbstractMap`和`Cloneable`,但不直接实现`Collection`接口。

       早期的HashMap(JDK 1.7之前)使用数组和链表来处理hash冲突。每个`Entry`对象存储键值对,如果冲突,就在数组对应位置形成链表。然而,当冲突过多导致链表过长,查询效率会降低。为解决这个问题,JDK 1.8引入了红黑树,但并非所有情况都使用,而是根据性能优化进行选择。

       接下来会深入讲解HashMap的底层结构变化、扩容机制、性能分析,以及如何在实际操作中正确使用。这些知识点在面试中是常见的考察内容。如果你对这些话题感兴趣,记得继续关注后续内容。谢谢!

concurrenthashmap1.8源码如何详细解析?

       ConcurrentHashMap在JDK1.8的线程安全机制基于CAS+synchronized实现,而非早期版本的分段锁。

       在JDK1.7版本中,ConcurrentHashMap采用分段锁机制,包含一个Segment数组,每个Segment继承自ReentrantLock,并包含HashEntry数组,每个HashEntry相当于链表节点,用于存储key、value。默认支持个线程并发,每个Segment独立,互不影响。

       对于put流程,与普通HashMap相似,首先定位至特定的Segment,然后使用ReentrantLock进行操作,后续过程与HashMap基本相同。

       get流程简单,通过hash值定位至segment,再遍历链表找到对应元素。需要注意的是,value是volatile的,因此get操作无需加锁。

       在JDK1.8版本中,线程安全的关键在于优化了put流程。首先计算hash值,遍历node数组。若位置为空,则通过CAS+自旋方式初始化。

       若数组位置为空,尝试使用CAS自旋写入数据;若hash值为MOVED,表示需执行扩容操作;若满足上述条件均不成立,则使用synchronized块写入数据,同时判断链表或转换为红黑树进行插入。链表操作与HashMap相同,链表长度超过8时转换为红黑树。

       get查询流程与HashMap基本一致,通过key计算位置,若table对应位置的key相同则返回结果;如为红黑树结构,则按照红黑树规则获取;否则遍历链表获取数据。

HashMap 的初始值和最大值和扩容因子

       HashMap 初始化默认值为。你可以通过构造函数自定义初始值。

       最大值为1<<,这个值表示2的次方。在HashMap的源码注释中有明确说明。

       理解左移操作符<<是关键,它执行二进制左移操作。例如,1 << x 等同于2的x次方。

       当存储元素超过最大值时,HashMap会强制将数组大小capacity设置为最大值。

       初始化和扩容时,数组大小capacity被限制在两个地方:通过tableSizeFor()函数设置为2的幂次,不超过最大值;或在容量翻倍时,设置为1 << ,但实际容量为Integer.MAX_VALUE避免整型溢出。

       加载因子,即扩容因子,决定何时进行扩容。比如,加载因子为0.5,初始化容量为时,当元素数达到8个,HashMap会进行扩容。加载因子为0.时,考虑性能与容量平衡。

       以上参数在JDK源代码中定义,是使用HashMap的基础。

hashmap底层实现原理

       hashmap底层实现原理是SortedMap接口能够把它保存的记录根据键排序,默认是按键值的升序排序,也可以指定排序的比较器,当用Iterator遍历TreeMap时,得到的记录是排过序的。

       å¦‚果使用排序的映射,建议使用TreeMap。在使用TreeMap时,key必须实现Comparable接口或者在构造TreeMap传入自定义的Comparator,否则会在运行时抛出java.lang.ClassCastException类型的异常。

       Hashtable是遗留类,很多映射的常用功能与HashMap类似,不同的是它承自Dictionary类,并且是线程安全的,任一时间只有一个线程能写Hashtable

       ä»Žç»“构实现来讲,HashMap是:数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的。

扩展资料

       ä»Žæºç å¯çŸ¥ï¼ŒHashMap类中有一个非常重要的字段,就是 Node[] table,即哈希桶数组。Node是HashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对),除了K,V,还包含hash和next。

       HashMap就是使用哈希表来存储的。哈希表为解决冲突,采用链地址法来解决问题,链地址法,简单来说,就是数组加链表的结合。在每个数组元素上都一个链表结构,当数据被Hash后,得到数组下标,把数据放在对应下标元素的链表上。

       å¦‚果哈希桶数组很大,即使较差的Hash算法也会比较分散,如果哈希桶数组数组很小,即使好的Hash算法也会出现较多碰撞,所以就需要在空间成本和时间成本之间权衡,其实就是在根据实际情况确定哈希桶数组的大小,并在此基础上设计好的hash算法减少Hash碰撞。

更多相关资讯请点击【休闲】频道>>>