皮皮网
皮皮网

【c 库 源码】【2018vip影视源码】【app展示单页源码】c 优化源码_c代码优化工具

时间:2025-01-07 23:34:06 来源:买断源码

1.c ?优优化Ż?Դ??
2.详解三大编译器:gcc、llvm 和 clang
3.C语言中条件编译预
4.c语言怎么反编译源码?
5.c源码如何反编译
6.如何优化C++程序代码编写

c 优化源码_c代码优化工具

c ?化源Ż?Դ??

       在编程领域,GCC、代码GDB和CMake是工具构建、调试和管理C++项目的优优化重要工具。下面,化源c 库 源码我们将详细介绍这些工具的代码关键用法。

       编译器:g++

       使用g++编译器时,工具理解各种关键参数对于高效编程至关重要。优优化

       -g: 产生带调试信息的化源可执行文件

       该选项告知GCC生成调试信息,以便GDB进行调试。代码

       -O[n]: 优化源代码

       通过指定数字n,工具可以调整优化级别,优优化以平衡程序性能与开发效率。化源

       -l和-L: 指定库文件与路径

       这些参数用于链接特定库文件及指定库文件路径,代码确保程序正确运行。

       -I: 指定头文件搜索目录

       允许程序查找和包含指定目录下的头文件。

       -Wall: 打印警告信息

       此参数开启所有警告信息,有助于快速识别代码潜在问题。2018vip影视源码

       -w: 关闭警告信息

       关闭警告提示,减少屏幕干扰,但在开发过程中建议保持开启。

       -std=c++: 设置编译标准

       指定使用C++标准,支持更多现代C++特性。

       -o: 指定输出文件名

       指定生成的可执行文件或库文件的名称。

       -D: 定义宏

       允许在编译时定义特定常量,用于控制代码行为。

       GDB调试器

       在使用GDB调试程序时,熟悉常用命令参数能极大提升调试效率。

       启动GDB: `gdb [exefilename]`

       此命令进入GDB调试模式,其中`exefilename`为目标可执行文件。

       CMake构建工具

       CMake简化了跨平台开发过程,以下关键点有助于高效利用CMake。

       CMakeLists.txt文件:项目主目录中包含CMake构建指令。

       通过此文件描述项目结构与编译需求。

       语法特性:指令、参数和变量的app展示单页源码规范使用。

       包括指定编译器版本、定义工程、添加头文件和库路径等。

       重要指令与变量:如`cmake_minimum_required`、`project`、`set`等,用于定义构建规则。

       正确配置这些指令和变量,可实现自动化构建过程。

       编译与构建流程:CMake支持外部构建,保持源文件与编译输出分离,便于管理。

       推荐使用外部构建方式,保持项目结构清晰。

       实践案例

       通过编写CMakeLists.txt文件,可以自动化构建不同规模的C++项目。实例包括最小CMake工程、多目录工程及其库文件生成等。网页播放视频源码下载

       最小CMake工程示例

       简单定义工程名称和目标文件,实现基本项目构建。

       多目录工程示例

       包含子目录管理、源文件自动发现与编译规则设置,支持复杂项目结构。

       其他注意事项

       `_GLIBCXX_USE_CXX_ABI`参数用于控制库选择,通过配置此环境变量,确保C++标准库的兼容性与性能。

       正确使用CMake和GCC工具链,可以显著提升开发效率与程序质量。

详解三大编译器:gcc、llvm 和 clang

       详解三大编译器:gcc、llvm和clang

       编译器结构通常包括前端、优化器和后端。前端负责解析源代码,语法分析,生成抽象语法树;优化器在此基础上优化中间代码,追求效率提升;后端则将优化后的产品溯源监管系统源码代码转化为特定平台的机器码。

       GNU Compiler Collection (gcc)起源于C语言编译器,后来扩展支持多种语言。然而,苹果公司由于对Objective-C特性和IDE需求的特殊性,与gcc分道扬镳,转而引入了LLVM。LLVM不仅提供编译器支持,还是一个底层虚拟机,可作为多种编译器的后端,其优点在于模块化和代码重用。

       Chris Lattner,这位编译器大牛,凭借在LLVM的研究和开发,特别是他提出的编译时优化思想,使得LLVM在苹果的Mac OS X .5中大放异彩。Clang是LLVM的前端,专为C、C++和Objective-C设计,旨在替代gcc。Clang在速度、内存占用和诊断信息可读性方面优于gcc,同时支持更多的编程语言和API集成。

       在选择gcc、LLVM和Clang时,最新项目推荐使用LLVM-GCC,因为它稳定且成熟,是Xcode 4的预设。然而,老版本的gcc不推荐使用,因为苹果对其维护较少。对于动态语言支持和代码重用,LLVM的特性更胜一筹,它不仅是一个编译器集合,更是库集合,为开发者提供了更大的灵活性。

       总的来说,LLVM通过提供通用中间代码和模块化设计,解决了传统编译器的局限,使代码重用成为可能,这使得它在现代编译器领域中独具优势。

C语言中条件编译预

       既然知道是条件预编译,那么就不难理解了。C语言由源代码生成的各阶段如下:

       C源程序->编译预处理->编译->优化程序->汇编程序->链接程序->可执行文件。

       预处理指令先对以#号开头的代码(例如头文件#include <stdio.h>、条件编译指令#if/#ifdef等)进行处理,而不是在程序编译执行时才处理的。也就是正常情况下#if t中的t应该是常量表达式,用于编译预处理。而你程序中的t是在编译后执行时,给t赋值,是无效的。

       建议看下谭浩强的《C程序设计》的预处理命令这一章节,说的比较透彻。

c语言怎么反编译源码?

       需要准备的工具:电脑,反编译工具ILSpy。

       1、首先在百度上搜索下载反编译工具ILSpy,解压后如图,双击.exe文件打开解压工具。

       2、选择file选项,点击“打开”。

       3、接着选择要反编译的文件,点击“打开”。

       4、这是会出现一个对话框,在这个对话框里面就可以看到源码了。

       5、如果想把源码保存下来,自己在源码的基础上修改,点击"file"下的“Save code...”,保存即可。

       6、如需用vs打开反编译后的源码,只需要打开这个.csproj文件即可。

c源码如何反编译

       C语言源码的反编译是一个复杂且通常不完全可逆的过程。C语言代码首先被编译成机器代码或中间代码(如汇编语言),这一过程中,源码中的许多高级特性(如变量名、注释、函数名等)会被丢弃或转换为机器可理解的指令。因此,直接从编译后的可执行文件或库文件“反编译”回原始的C源码是不可能的,尤其是当编译时开启了优化选项时。

       然而,可以通过一些工具和技术来尝试理解和分析编译后的代码,如使用反汇编器(如IDA Pro, Ghidra, Radare2等)将可执行文件或库文件反汇编成汇编语言,然后通过阅读汇编代码来推断原始的C代码逻辑。此外,还有符号恢复技术可以用来恢复一些函数名和变量名,但这通常需要额外的符号表信息或调试信息。

       总的来说,虽然不能直接反编译成原始的C源码,但可以通过上述方法获得对程序行为的深入理解。对于版权和法律保护的原因,反编译通常受到严格限制,特别是在没有授权的情况下对软件进行逆向工程。

如何优化C++程序代码编写

       ç¬¬ä¸€æ‹›ï¼šä»¥ç©ºé—´æ¢æ—¶é—´

       è®¡ç®—机程序中最大的矛盾是空间和时间的矛盾,那么,从这个角度出发逆向思维来考虑程序的效率问题,我们就有了解决问题的第1招--以空间换时间。比如说字符串的赋值:

方法A:通常的办法

#define LEN 

       char string1 [LEN];

       memset (string1,0,LEN);

       strcpy (string1,"This is a example!!");

       æ–¹æ³•B:

       const char string2[LEN] ="This is a example!";

       char * cp;

       cp = string2 ;

       ä½¿ç”¨çš„时候可以直接用指针来操作。

       ä»Žä¸Šé¢çš„例子可以看出,A和B的效率是不能比的。在同样的存储空间下,B直接使用指针就可以操作了,而A需要调用两个字符函数才能完成。B的缺点在于灵活性没有A好。在需要频繁更改一个字符串内容的时候,A具有更好的灵活性;如果采用方法B,则需要预存许多字符串,虽然占用了大量的内存,但是获得了程序执行的高效率。

       å¦‚果系统的实时性要求很高,内存还有一些,那我推荐你使用该招数。

第二招: 使用宏而不是函数。

       è¿™ä¹Ÿæ˜¯ç¬¬ä¸€æ‹›çš„变招。函数和宏的区别就在于,宏占用了大量的空间,而函数占用了时间。大家要知道的是,函数调用是要使用系统的栈来保存数据的,如果编译器里有栈检查选 项,一般在函数的头会嵌入一些汇编语句对当前栈进行检查;同时,CPU也要在函数调用时保存和恢复当前的现场,进行压栈和弹栈操作,所以,函数调用需要一 些CPU时间。 而宏不存在这个问题。宏仅仅作为预先写好的代码嵌入到当前程序,不会产生函数调用,所以仅仅是占用了空间,在频繁调用同一个宏的时候,该现象尤其突出。

       ä¸¾ä¾‹å¦‚下:

方法C:

#define bwMCDR2_ADDRESS 4

       #define bsMCDR2_ADDRESS 

       int BIT_MASK(int __bf)

       {

       return ((1U << (bw ## __bf)) - 1)<< (bs ## __bf);

       }

       void SET_BITS(int __dst,

       int __bf, int __val)

       {

       __dst = ((__dst) & ~(BIT_MASK(__bf))) |

       (((__val) << (bs ## __bf))

       & (BIT_MASK(__bf))))

       }

       SET_BITS(MCDR2, MCDR2_ADDRESS,ReGISterNumber);

方法D:

#define bwMCDR2_ADDRESS 4

       #define bsMCDR2_ADDRESS 

       #define bmMCDR2_ADDRESS BIT_MASK(MCDR2_ADDRESS)

       #define BIT_MASK(__bf)

       (((1U << (bw ## __bf)) - 1)

       << (bs ## __bf))

       #define SET_BITS(__dst, __bf, __val)

       ((__dst) = ((__dst) & ~(BIT_MASK(__bf)))

       |

       (((__val) << (bs ## __bf))

       & (BIT_MASK(__bf))))

       SET_BITS(MCDR2, MCDR2_ADDRESS,

       RegisterNumber);

       D方法是我看到的最好的置位操作函数,是arm公司源码的一部分,在短短的三行内实现了很多功能,几乎涵盖了所有的位操作功能。C方法是其变体,其中滋味还需大家仔细体会。

       ç¬¬ä¸‰æ‹›ï¼šæ•°å­¦æ–¹æ³•è§£å†³é—®é¢˜

       çŽ°åœ¨æˆ‘们演绎高效C语言编写的第二招--采用数学方法来解决问题。数学是计算机之母,没有数学的依据和基础,就没有计算机的发展,所以在编写程序的时候,采用一些数学方法会对程序的执行效率有数量级的提高。举例如下,求 1~的和。

方法E:

int I , j;

       for (I = 1 ;I<=; I ++)

       {

       j += I;

       }

方法F

int I;

       I = ( * (1+)) / 2

       è¿™ä¸ªä¾‹å­æ˜¯æˆ‘印象最深的一个数学用例,是我的计算机启蒙老师考我的。当时我只有小学三年级,可惜我当时不知道用公式 N×(N+1)/ 2 来解决这个问题。方法E循环了次才解决问题,也就是说最少用了个赋值,个判断,个加法(I和j);而方法F仅仅用了1个加法,1 次乘法,1次除法。效果自然不言而喻。所以,现在我在编程序的时候,更多的是动脑筋找规律,最大限度地发挥数学的威力来提高程序运行的效率。

第四招:使用位操作

       ä½¿ç”¨ä½æ“ä½œã€‚减少除法和取模的运算。在计算机程序中数据的位是可以操作的最小数据单位,理论上可以用"位运算"来完成所有的运算和操作。一般的位操作是用来控制硬件的,或者做数据变换使用,但是,灵活的位操作可以有效地提高程序运行的效率。举例如下:

方法G

int I,J;

       I =  /8;

       J =  % ;

方法H

int I,J;

       I =  >>3;

       J =  - ( >> 4 << 4);

       åœ¨å­—面上好像H比G麻烦了好多,但是,仔细查看产生的汇编代码就会明白,方法G调用了基本的取模函数和除法函数,既有函数调用,还有很多汇编代码和寄存器参与运算;而方法H则仅仅是几句相关的汇编,代码更简洁,效率更高。当然,由于编译器的不同,可能效率的差距不大,但是,以我目前遇到的MS C ,arm C 来看,效率的差距还是不小。

       å¯¹äºŽä»¥2的指数次方为"*"、"/"或"%"因子的数学运算,转化为移位运算"<< >>"通常可以提高算法效率。因为乘除运算指令周期通常比移位运算大。

       C语言位运算除了可以提高运算效率外,在嵌入式系统的编程中,它的另一个最典型的应用,而且十分广泛地正在被使用着的是位间的与(&)、或(|)、非(~)操作,这跟嵌入式系统的编程特点有很大关系。我们通常要对硬件寄存器进行位设置,譬如,我们通过将AMER型处理器的中断屏蔽控制寄存器的第低6位设置为0(开中断2),最通用的做法是:

       #define INT_I2_MASK 0x

       wTemp = inword(INT_MASK);

       outword(INT_MASK, wTemp &~INT_I2_MASK);

       è€Œå°†è¯¥ä½è®¾ç½®ä¸º1的做法是:

       #define INT_I2_MASK 0x

       wTemp = inword(INT_MASK);

       outword(INT_MASK, wTemp | INT_I2_MASK);

       åˆ¤æ–­è¯¥ä½æ˜¯å¦ä¸º1的做法是:

       #define INT_I2_MASK 0x

       wTemp = inword(INT_MASK);

       if(wTemp & INT_I2_MASK)

       {

       â€¦ /* 该位为1 */

       }

       è¿ç”¨è¿™æ‹›éœ€è¦æ³¨æ„çš„是,因为CPU的不同而产生的问题。比如说,在PC上用这招编写的程序,并在PC上调试通过,在移植到一个位机平台上的时候,可能会产生代码隐患。所以只有在一定技术进阶的基础下才可以使用这招。

第五招:汇编嵌入

       åœ¨ç†Ÿæ‚‰æ±‡ç¼–语言的人眼里,C语言编写的程序都是垃圾"。这种说法虽然偏激了一些,但是却有它的道理。汇编语言是效率最高的计算机语言,但是,不可能靠着它来写一个操作系统吧?所以,为了获得程序的高效率,我们只好采用变通的方法--嵌入汇编,混合编程。嵌入式C程序中主要使用在线汇编,即在C程序中直接插入_asm{ }内嵌汇编语句。

       ä¸¾ä¾‹å¦‚下,将数组一赋值给数组二,要求每一字节都相符。

       char string1[],string2[];

方法I

       int I;

       for (I =0 ;I<;I++)

       *(string2 + I) = *(string1 + I)

方法J

       #ifdef _PC_

       int I;

       for (I =0 ;I<;I++)

       *(string2 + I) = *(string1 + I);

       #else

       #ifdef _arm_

       __asm

       {

       MOV R0,string1

       MOV R1,string2

       MOV R2,#0

       loop:

       LDMIA R0!, [R3-R]

       STMIA R1!, [R3-R]

       ADD R2,R2,#8

       CMP R2, #

       BNE loop

       }

       #endif

       å†ä¸¾ä¸ªä¾‹å­ï¼š

       /* 把两个输入参数的值相加,结果存放到另外一个全局变量中 */

       int result;

       void Add(long a, long *b)

       {

       _asm

       {

       MOV AX, a

       MOV BX, b

       ADD AX, [BX]

       MOV result, AX

       }

       }

       æ–¹æ³•I是最常见的方法,使用了次循环;方法J则根据平台不同做了区分,在arm平台下,用嵌入汇编仅用次循环就完成了同样的操作。这里有朋友会说,为什么不用标准的内存拷贝函数呢?这是因为在源数据里可能含有数据为0的字节,这样的话,标准库函数会提前结束而不会完成我们要求的操作。这个例程典型应用于LCD数据的拷贝过程。根据不同的CPU,熟练使用相应的嵌入汇编,可以大大提高程序执行的效率。

       è™½ç„¶æ˜¯å¿…杀技,但是如果轻易使用会付出惨重的代价。这是因为,使用了嵌入汇编,便限制了程序的可移植性,使程序在不同平台移植的过程中,卧虎藏龙,险象环生!同时该招数也与现代软件工程的思想相违背,只有在迫不得已的情况下才可以采用。

第六招, 使用寄存器变量

       å½“对一个变量频繁被读写时,需要反复访问内存,从而花费大量的存取时间。为此,C语言提供了一种变量,即寄存器变量。这种变量存放在CPU的寄存器中,使用时,不需要访问内存,而直接从寄存器中读写,从而提高效率。寄存器变量的说明符是register。对于循环次数较多的循环控制变量及循环体内反复使用的变量均可定义为寄存器变量,而循环计数是应用寄存器变量的最好候选者。

       (1) 只有局部自动变量和形参才可以定义为寄存器变量。因为寄存器变量属于动态存储方式,凡需要采用静态存储方式的量都不能定义为寄存器变量,包括:模块间全局变量、模块内全局变量、局部static变量;

       (2) register是一个"建议"型关键字,意指程序建议该变量放在寄存器中,但最终该变量可能因为条件不满足并未成为寄存器变量,而是被放在了存储器中,但编译器中并不报错(在C++语言中有另一个"建议"型关键字:inline)。

       ä¸‹é¢æ˜¯ä¸€ä¸ªé‡‡ç”¨å¯„存器变量的例子:

       /* 求1+2+3+….+n的值 */

       WORD Addition(BYTE n)

       {

       register i,s=0;

       for(i=1;i<=n;i++)

       {

       s=s+i;

       }

       return s;

       }

       æœ¬ç¨‹åºå¾ªçŽ¯n次,i和s都被频繁使用,因此可定义为寄存器变量。

第七招: 利用硬件特性

       é¦–先要明白CPU对各种存储器的访问速度,基本上是:

       CPU内部RAM > 外部同步RAM > 外部异步RAM > FLASH/ROM

       å¯¹äºŽç¨‹åºä»£ç ï¼Œå·²ç»è¢«çƒ§å½•åœ¨FLASH或ROM中,我们可以让CPU直接从其中读取代码执行,但通常这不是一个好办法,我们最好在系统启动后将FLASH或ROM中的目标代码拷贝入RAM中后再执行以提高取指令速度;

       å¯¹äºŽUART等设备,其内部有一定容量的接收BUFFER,我们应尽量在BUFFER被占满后再向CPU提出中断。例如计算机终端在向目标机通过RS-传递数据时,不宜设置UART只接收到一个BYTE就向CPU提中断,从而无谓浪费中断处理时间;

       å¦‚果对某设备能采取DMA方式读取,就采用DMA读取,DMA读取方式在读取目标中包含的存储信息较大时效率较高,其数据传输的基本单位是块,而所传输的数据是从设备直接送入内存的(或者相反)。DMA方式较之中断驱动方式,减少了CPU 对外设的干预,进一步提高了CPU与外设的并行操作程度。

       ä»¥ä¸Šå°±æ˜¯æˆ‘总结的如何优化C代码的方法了。

更多内容请点击【休闲】专栏