1.详解布隆过滤器的原理和实现
2.制作游戏辅助需要学什么
3.怎么去学习编程c语言,我没有一点数学基础 还有就是看不懂里面的代码 需要怎样去学 谢谢!
详解布隆过滤器的原理和实现
为什么需要布隆过滤器
想象一下遇到下面的场景你会如何处理:
手机号是否重复注册
用户是否参与过某秒杀活动
伪造请求大量 id 查询不存在的记录,此时缓存未命中,如何避免缓存穿透
针对以上问题常规做法是:查询数据库,数据库硬扛,如果压力并不大可以使用此方法,linux socket 源码保持简单即可。
改进做法:用 list/set/tree 维护一个元素集合,判断元素是否在集合内,时间复杂度或空间复杂度会比较高。如果是微服务的话可以用 redis 中的 list/set 数据结构, 数据规模非常大此方案的内存容量要求可能会非常高。
这些场景有个共同点,可以将问题抽象为:如何高效判断一个元素不在集合中? 那么有没有一种更好方案能达到时间复杂度和空间复杂双优呢?
有!布隆过滤器。
什么是钓鱼神器源码布隆过滤器布隆过滤器(英语:Bloom Filter)是 年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中,它的优点是空间效率和查询时间都远远超过一般的算法。
工作原理
布隆过滤器的原理是,当一个元素被加入集合时,通过 K 个散列函数将这个元素映射成一个位数组中的 K 个点(offset),把它们置为 1。检索时,我们只要看看这些点是不是都是 1 就(大约)知道集合中有没有它了:如果这些点有任何一个 0,则被检元素一定不在;如果都是 1,则被检元素很可能在。这就是布隆过滤器的基本思想。
简单来说就是准备一个长度为 m 的位数组并初始化所有元素为 0,用 k 个散列函数对元素进行 k 次散列运算跟 len(m)取余得到 k 个位置并将 m 中对应位置设置为 1。qta源码分析
布隆过滤器优缺点优点:
空间占用极小,因为本身不存储数据而是用比特位表示数据是否存在,某种程度有保密的效果。
插入与查询时间复杂度均为 O(k),常数级别,k 表示散列函数执行次数。
散列函数之间可以相互独立,可以在硬件指令层加速计算。
缺点:
误差(假阳性率)。
无法删除。
误差(假阳性率)
布隆过滤器可以 % 判断元素不在集合中,但是当元素在集合中时可能存在误判,因为当元素非常多时散列函数产生的 k 位点可能会重复。 维基百科有关于假阳性率的项目源码压缩数学推导(见文末链接)这里我们直接给结论(实际上是我没看懂...),假设:
位数组长度 m
散列函数个数 k
预期元素数量 n
期望误差ε
在创建布隆过滤器时我们为了找到合适的 m 和 k ,可以根据预期元素数量 n 与 ε 来推导出最合适的 m 与 k 。
java 中 Guava, Redisson 实现布隆过滤器估算最优 m 和 k 采用的就是此算法:
//计算哈希次数@VisibleForTestingstaticintoptimalNumOfHashFunctions(longn,longm){ //(m/n)*log(2),butavoidtruncationduetodivision!returnMath.max(1,(int)Math.round((double)m/n*Math.log(2)));}//计算位数组长度@VisibleForTestingstaticlongoptimalNumOfBits(longn,doublep){ if(p==0){ p=Double.MIN_VALUE;}return(long)(-n*Math.log(p)/(Math.log(2)*Math.log(2)));}无法删除
位数组中的某些 k 点是多个元素重复使用的,假如我们将其中一个元素的 k 点全部置为 0 则直接就会影响其他元素。 这导致我们在使用布隆过滤器时无法处理元素被删除的场景。
可以通过定时重建的方式清除脏数据。假如是通过 redis 来实现的话重建时不要直接删除原有的 key,而是先生成好新的再通过 rename 命令即可,再删除旧数据即可。
go-zero 中的 bloom filter 源码分析core/bloom/bloom.go 一个布隆过滤器具备两个核心属性:
位数组:
散列函数
go-zero实现的bloom filter中位数组采用的是Redis.bitmap,既然采用的是 redis 自然就支持分布式场景,散列函数采用的是MurmurHash3
Redis.bitmap 为什么可以作为位数组呢?
Redis 中的并没有单独的 bitmap 数据结构,底层使用的是动态字符串(SDS)实现,而 Redis 欧宝源码中的字符串实际都是以二进制存储的。 a 的ASCII码是 ,转换为二进制是:,如果我们要将其转换为b只需要进一位即可:。下面通过Redis.setbit实现这个操作:
set foo a \ OK \ get foo \ "a" \ setbit foo 6 1 \ 0 \ setbit foo 7 0 \ 1 \ get foo \ "b"
bitmap 底层使用的动态字符串可以实现动态扩容,当 offset 到高位时其他位置 bitmap 将会自动补 0,最大支持 2^-1 长度的位数组(占用内存 M),需要注意的是分配大内存会阻塞Redis进程。 根据上面的算法原理可以知道实现布隆过滤器主要做三件事情:
k 次散列函数计算出 k 个位点。
插入时将位数组中 k 个位点的值设置为 1。
查询时根据 1 的计算结果判断 k 位点是否全部为 1,否则表示该元素一定不存在。
下面来看看go-zero 是如何实现的:
对象定义
//表示经过多少散列函数计算//固定次maps=type(//定义布隆过滤器结构体Filterstruct{ bitsuintbitSetbitSetProvider}//位数组操作接口定义bitSetProviderinterface{ check([]uint)(bool,error)set([]uint)error})位数组操作接口实现
首先需要理解两段 lua 脚本:
//ARGV:偏移量offset数组//KYES[1]:setbit操作的key//全部设置为1setScript=`for_,offsetinipairs(ARGV)doredis.call("setbit",KEYS[1],offset,1)end`//ARGV:偏移量offset数组//KYES[1]:setbit操作的key//检查是否全部为1testScript=`for_,offsetinipairs(ARGV)doiftonumber(redis.call("getbit",KEYS[1],offset))==0thenreturnfalseendendreturntrue`为什么一定要用 lua 脚本呢? 因为需要保证整个操作是原子性执行的。
//redis位数组typeredisBitSetstruct{ store*redis.Clientkeystringbitsuint}//检查偏移量offset数组是否全部为1//是:元素可能存在//否:元素一定不存在func(r*redisBitSet)check(offsets[]uint)(bool,error){ args,err:=r.buildOffsetArgs(offsets)iferr!=nil{ returnfalse,err}//执行脚本resp,err:=r.store.Eval(testScript,[]string{ r.key},args)//这里需要注意一下,底层使用的go-redis//redis.Nil表示key不存在的情况需特殊判断iferr==redis.Nil{ returnfalse,nil}elseiferr!=nil{ returnfalse,err}exists,ok:=resp.(int)if!ok{ returnfalse,nil}returnexists==1,nil}//将k位点全部设置为1func(r*redisBitSet)set(offsets[]uint)error{ args,err:=r.buildOffsetArgs(offsets)iferr!=nil{ returnerr}_,err=r.store.Eval(setScript,[]string{ r.key},args)//底层使用的是go-redis,redis.Nil表示操作的key不存在//需要针对key不存在的情况特殊判断iferr==redis.Nil{ returnnil}elseiferr!=nil{ returnerr}returnnil}//构建偏移量offset字符串数组,因为go-redis执行lua脚本时参数定义为[]stringy//因此需要转换一下func(r*redisBitSet)buildOffsetArgs(offsets[]uint)([]string,error){ varargs[]stringfor_,offset:=rangeoffsets{ ifoffset>=r.bits{ returnnil,ErrTooLargeOffset}args=append(args,strconv.FormatUint(uint(offset),))}returnargs,nil}//删除func(r*redisBitSet)del()error{ _,err:=r.store.Del(r.key)returnerr}//自动过期func(r*redisBitSet)expire(secondsint)error{ returnr.store.Expire(r.key,seconds)}funcnewRedisBitSet(store*redis.Client,keystring,bitsuint)*redisBitSet{ return&redisBitSet{ store:store,key:key,bits:bits,}}到这里位数组操作就全部实现了,接下来看下如何通过 k 个散列函数计算出 k 个位点
k 次散列计算出 k 个位点
//k次散列计算出k个offsetfunc(f*Filter)getLocations(data[]byte)[]uint{ //创建指定容量的切片locations:=make([]uint,maps)//maps表示k值,作者定义为了常量:fori:=uint(0);i<maps;i++{ //哈希计算,使用的是"MurmurHash3"算法,并每次追加一个固定的i字节进行计算hashValue:=hash.Hash(append(data,byte(i)))//取下标offsetlocations[i]=uint(hashValue%uint(f.bits))}returnlocations}插入与查询
添加与查询实现就非常简单了,组合一下上面的函数就行。
//添加元素func(f*Filter)Add(data[]byte)error{ locations:=f.getLocations(data)returnf.bitSet.set(locations)}//检查是否存在func(f*Filter)Exists(data[]byte)(bool,error){ locations:=f.getLocations(data)isSet,err:=f.bitSet.check(locations)iferr!=nil{ returnfalse,err}if!isSet{ returnfalse,nil}returntrue,nil}改进建议整体实现非常简洁高效,那么有没有改进的空间呢?
个人认为还是有的,上面提到过自动计算最优 m 与 k 的数学公式,如果创建参数改为:
预期总数量expectedInsertions
期望误差falseProbability
就更好了,虽然作者注释里特别提到了误差说明,但是实际上作为很多开发者对位数组长度并不敏感,无法直观知道 bits 传多少预期误差会是多少。
//NewcreateaFilter,storeisthebackedredis,keyisthekeyforthebloomfilter,//bitsishowmanybitswillbeused,mapsishowmanyhashesforeachaddition.//bestpractices://elements-meanshowmanyactualelements//whenmaps=,formula:0.7*(bits/maps),bits=*elements,theerrorrateis0.<1e-4//fordetailederrorratetable,see/类似有很多,北大、北邮这种大学都有类似的网站,上面不仅有题目,还有算法、有答案、有提示,还能直接在网页上做题。刷题可以获得及时反馈,一旦你AC了3道题,那种成就感可以让你继续下去,哈哈。不过除非你兴趣就是算法本身,那么刷道题基本就可以了,毕竟这种刷题会猛烈地提高算法能力,但是对架构能力的提升几乎没有任何作用,对大多数人来说不建议刷太多。
4、非常重要的私货:如果除了做练习题以外没有练习机会,那么请把C语言放一下,快速学习Python(首选)、Lua(次选)、JavaScript(或TypeScript更好)等能够立即实现功能效果的语言。学习好的动态语言有两方面好处:
第一:表层来说,能迅速提高逻辑代码的编写能力。用C语言构思半天才能写一点的功能,用动态语言会快速的多,动态语言将我们从内存分配、容器等基本问题中解脱出来,直接实现我们想要的效果。用动态语言实现之后,可以用C语言仿写这些逻辑代码,相当于按图索骥,直达目的。
第二:深层来说,较高级的语言对底层的语言编写有强烈的指导意义。我个人在工作中使用C++用了很长时间,但是总感觉遇到瓶颈无法突破。直到我学习了Python,写了一两个比较复杂的工具,从另一个角度突破了逻辑设计的屏障,才感觉到编程水平有了明显提高。
第三:在掌握了Lua或Python后,再找资料一边学习一边看Lua和Python的C源码,对提高C语言水平有实质性的帮助。
这里举一个简单的例题:一个文件中有很多对ID和字段,这些ID和字段对分别代表另一个文件。而另一个文件内容可能会链接到更深一级的文件。怎样读取这些文件组成一棵树呢?
这个问题对能力达到一定水平的人是基础问题,而对于初学者来说可能是一个门槛。这种问题我的建议是用Python或Lua的表、字典来解决,然后理清思路之后,改写为C代码。
2025-01-08 23:39
2025-01-08 23:33
2025-01-08 22:56
2025-01-08 22:15
2025-01-08 21:52
2025-01-08 21:04