1.WAVM源码解析 —— WASI接口定义、源码内部实例初始化及实例链接
2.PyTorch 源码解读之 torch.optim:优化算法接口详解
3.Flink Collector Output 接口源码解析
WAVM源码解析 —— WASI接口定义、显示内部实例初始化及实例链接
从前面文章中,接口我们知道WAVM执行WASM程序的源码流程。本文着重解析第三、显示四、接口硬盘挖矿源码五部分:生成内部实例、源码调用接口与实例链接。显示
生成内部实例的接口关键在于调用接口,接口参数是源码Intrinsics::Module类型的列表。内部实例不基于WASM程序,显示仅关注导入导出段内容,接口因此Intrinsics::Module类仅包含Function、源码Global、显示识梦源码Table、接口Memory等元素。宏定义WAVM_INTRINSIC_MODULE_REF(wasi)生成一个Intrinsics::Module对象,其实际实现对应WASI标准接口。
初始化Intrinsics::Module对象通过宏函数WAVM_DEFINE_INTRINSIC_FUNCTION完成,这个宏定义接口并将其赋值给Intrinsics::Module对象。以sched_yield为例,宏定义后生成一个静态的Intrinsics::Function对象,通过构造函数自动赋值到Intrinsics::Module中。
Intrinsics::instantiateModule()函数执行步骤包括:将moduleRefs转化为IR::Module,编译生成的IR::Module,调用实例化接口函数生成内部实例。关键步骤为将外部接口函数转化为WASM格式的spring beanfactory 源码thunks函数,并将thunks导出。最终,通过实例化创建出内部实例,与普通实例的主要区别在于导入段内容的获取方式。
链接器实现实例化的一大功能,即提供查询导出项的接口。核心逻辑简单,具体实现则较为复杂,本文不展开解析。关于实例化细节,后续文章将深入探讨。
PyTorch 源码解读之 torch.optim:优化算法接口详解
本文深入解读了 PyTorch 中的优化算法接口 torch.optim,主要包括优化器 Optimizer、记录车牌源码学习率调整策略 LRScheduler 及 SWA 相关优化策略。以下为详细内容:
Optimizer 是所有优化器的基类,提供了初始化、更新参数、设置初始学习率等基本方法。在初始化优化器时,需要传入模型的可学习参数和超参数。Optimizer 的核心方法包括:
1. 初始化函数:创建优化器时,需指定模型的可学习参数和超参数,如学习率、动量等。
2. add_param_group:允许为模型的不同可学习参数组设置不同的超参数,以适应不同的eos网站源码学习需求。
3. step:执行一次模型参数更新,需要闭包提供损失函数的梯度信息。
4. zero_grad:在更新参数前,清空参数的梯度信息。
5. state_dict 和 load_state_dict:用于序列化和反序列化优化器的状态,便于保存和加载模型的训练状态。
Optimizer 包括常见的优化器如 SGD、Adagrad、RMSprop 和 Adam,各有特点,适用于不同的应用场景。例如,SGD 适用于简单场景,而 Adam 则在处理大数据集时表现更优。
学习率调节器 lr_scheduler 则负责在训练过程中调整学习率,以适应模型的收敛过程。PyTorch 提供了多种学习率调整策略,如 StepLR、MultiStepLR、ExponentialLR 等,每种策略都有其特点和应用场景,如 StepLR 用于周期性调整学习率,以加速收敛。
SWA(随机权重平均)是一种优化算法,通过在训练过程中计算模型参数的平均值,可以得到更稳定的模型,提高泛化性能。SWA 涉及 AveragedModel 类,用于更新模型的平均参数,以及 update_bn 函数,用于在训练过程中更新批量归一化参数。
总结,torch.optim 提供了丰富的优化算法接口,可以根据模型训练的需求灵活选择和配置,以达到最佳的训练效果和泛化性能。通过深入理解这些优化器和学习率调整策略,开发者可以更有效地训练深度学习模型。
Flink Collector Output 接口源码解析
Flink Collector Output 接口源码解析
Flink中的Collector接口和其扩展Output接口在数据传递中起关键作用。Output接口增加了Watermark功能,是数据传输的基石。本文将深入解析collect方法及相关重要实现类,帮助理解数据传递的逻辑和场景划分。Collector和Output接口
Collector接口有2个核心方法,Output接口则增加了4个功能,WatermarkGaugeExposingOutput接口则专注于显示Watermark值。主要关注collect方法,它是数据发送的核心操作,Flink中有多个Output实现类,针对不同场景如数据传递、Metrics统计、广播和时间戳处理。Output实现类分类
Output类可以归类为:同一operatorChain内的数据传递(如ChainingOutput和CopyingChainingOutput)、跨operatorChain间(RecordWriterOutput)、统计Metrics(CountingOutput)、广播(BroadcastingOutputCollector)和时间戳处理(TimestampedCollector)。示例应用与调用链路
通过一个示例,我们了解了Kafka Source与Map算子之间的数据传递使用ChainingOutput,而Map到Process之间的传递则用RecordWriterOutput。在不同Output的选择中,objectReuse配置起着决定性作用,影响性能和安全性。 总结来说,ChainingOutput用于operatorChain内部,RecordWriterOutput处理跨chain,CountingOutput负责Metrics,BroadcastingOutputCollector用于广播,TimestampedCollector则用于设置时间戳。开启objectReuse会影响选择的Output类型。阅读推荐
Flink任务实时监控
Flink on yarn日志收集
Kafka Connector更新
自定义Kafka反序列化
SQL JSON Format源码解析
Yarn远程调试源码
State Processor API状态操作
侧流输出源码
Broadcast流状态源码解析
Flink启动流程分析
Print SQL Connector取样功能