1.String源码分析(1)--哈希篇
2.HashMap实现原理一步一步分析(1-put方法源码整体过程)
3.HashMapå®ç°åç
4.hash / hashtable(linux kernel 哈希表)
String源码分析(1)--哈希篇
本文基于JDK1.8,从Java中==符号的源码使用开始,解释了它判断的散列散列是对象的内存地址而非内容是否相等。接着,源码通过分析String类的散列散列equals()方法实现,说明了在比较字符串时,源码自适应源码下载应使用equals()而非==,散列散列因为equals()方法可以准确判断字符串内容是源码否相等。
深入探讨了String类作为“值类”的散列散列特性,即它需要覆盖Object类的源码equals()方法,以满足比较字符串时逻辑上相等的散列散列需求。同时,源码强调了在覆盖equals()方法时也必须覆盖hashCode()方法,散列散列定做棋牌游戏源码以确保基于散列的源码集合(如HashMap、HashSet和Hashtable)可以正常工作。散列散列解释了哈希码(hashcode)在将不同的输入映射成唯一值中的作用,以及它与字符串内容的关系。
在分析String类的hashcode()方法时,介绍了计算哈希值的公式,包括使用这个奇素数的原因,以及其在计算性能上的优势。进一步探讨了哈希碰撞的概念及其产生的影响,提出了防止哈希碰撞的有效方法之一是扩大哈希值的取值空间,并介绍了生日攻击这一概念,解释了它如何在哈希空间不足够大时制造碰撞。2023扫雷红包源码
最后,总结了哈希碰撞与散列表性能的关系,以及在满足安全与成本之间找到平衡的重要性。提出了确保哈希值的最短长度的考虑因素,并提醒读者在理解和学习JDK源码时,可以关注相关公众号以获取更多源码分析文章。
HashMap实现原理一步一步分析(1-put方法源码整体过程)
本文分享了HashMap内部的实现原理,重点解析了哈希(hash)、散列表(hash table)、哈希码(hashcode)以及hashCode()方法等基本概念。
哈希(hash)是将任意长度的输入通过散列算法转换为固定长度输出的过程,建立一一对应关系。卖软件源码违法常见算法包括MD5加密和ASCII码表。
散列表(hash table)是一种数据结构,通过关键码值映射到表中特定位置进行快速访问。
哈希码(hashcode)是散列表中对象的存储位置标识,用于查找效率。
Object类中的hashCode()方法用于获取对象的哈希码值,以在散列存储结构中确定对象存储地址。
在存储字母时,使用哈希码值对数组大小取模以适应存储范围,防止哈希碰撞。
HashMap在JDK1.7中使用数组+链表结构,而JDK1.8引入了红黑树以优化性能。cho指标公式源码
HashMap内部数据结构包含数组和Entry对象,数组用于存储Entry对象,Entry对象用于存储键值对。
在put方法中,首先判断数组是否为空并初始化,然后计算键的哈希码值对数组长度取模,用于定位存储位置。如果发生哈希碰撞,使用链表解决。
本文详细介绍了HashMap的存储机制,包括数组+链表的实现方式,以及如何处理哈希碰撞。后续文章将继续深入探讨HashMap的其他特性,如数组长度的优化、多线程环境下的性能优化和红黑树的引入。
HashMapå®ç°åç
HashMapå¨å®é å¼åä¸ç¨å°çé¢çé常é«ï¼é¢è¯ä¸ä¹æ¯çç¹ãæ以å³å®åä¸ç¯æç« è¿è¡åæï¼å¸æ对æ³çæºç ç人起å°ä¸äºå¸®å©ï¼çä¹åéè¦å¯¹é¾è¡¨æ¯è¾çæã以ä¸é½æ¯æèªå·±çç解ï¼æ¬¢è¿è®¨è®ºï¼åçä¸å¥½è½»å·ã
HashMapä¸çæ°æ®ç»æ为æ£å表ï¼åååå¸è¡¨ãå¨è¿éæä¼å¯¹æ£å表è¿è¡ä¸ä¸ªç®åçä»ç»ï¼å¨æ¤ä¹åæ们éè¦å å顾ä¸ä¸ æ°ç»ãé¾è¡¨çä¼ç¼ºç¹ã
æ°ç»åé¾è¡¨çä¼ç¼ºç¹åå³äºä»ä»¬åèªå¨å åä¸åå¨ç模å¼ï¼ä¹å°±æ¯ç´æ¥ä½¿ç¨é¡ºåºåå¨æé¾å¼åå¨å¯¼è´çãæ 论æ¯æ°ç»è¿æ¯é¾è¡¨ï¼é½æææ¾ç缺ç¹ãèå¨å®é ä¸å¡ä¸ï¼æ们æ³è¦çå¾å¾æ¯å¯»åãå é¤ãæå ¥æ§è½é½å¾å¥½çæ°æ®ç»æï¼æ£å表就æ¯è¿æ ·ä¸ç§ç»æï¼å®å·§å¦çç»åäºæ°ç»ä¸é¾è¡¨çä¼ç¹ï¼å¹¶å°å ¶ç¼ºç¹å¼±åï¼å¹¶ä¸æ¯å®å ¨æ¶é¤ï¼
æ£å表çåæ³æ¯å°keyæ å°å°æ°ç»çæ个ä¸æ ï¼ååçæ¶åéè¿keyè·åå°ä¸æ ï¼indexï¼ç¶åéè¿ä¸æ ç´æ¥ååãé度æå¿«ï¼èå°keyæ å°å°ä¸æ éè¦ä½¿ç¨æ£åå½æ°ï¼åååå¸å½æ°ã说å°åå¸å½æ°å¯è½æ人已ç»æ³å°äºï¼å¦ä½å°keyæ å°å°æ°ç»çä¸æ ã
å¾ä¸è®¡ç®ä¸æ 使ç¨å°äºä»¥ä¸ä¸¤ä¸ªå½æ°ï¼
å¼å¾æ³¨æçæ¯ï¼ä¸æ 并ä¸æ¯éè¿hashå½æ°ç´æ¥å¾å°çï¼è®¡ç®ä¸æ è¿è¦å¯¹hashå¼åindex()å¤çã
Psï¼å¨æ£å表ä¸ï¼æ°ç»çæ ¼åå«å桶ï¼ä¸æ å«å桶å·ï¼æ¡¶å¯ä»¥å å«ä¸ä¸ªkey-value对ï¼ä¸ºäºæ¹ä¾¿ç解ï¼åæä¸ä¼ä½¿ç¨è¿ä¸¤ä¸ªåè¯ã
以ä¸æ¯åå¸ç¢°æç¸å ³ç说æï¼
以ä¸æ¯ä¸æ å²çªç¸å ³ç说æï¼
å¾å¤äººè®¤ä¸ºåå¸å¼ç碰æåä¸æ å²çªæ¯åä¸ä¸ªä¸è¥¿ï¼å ¶å®ä¸æ¯çï¼å®ä»¬çæ£ç¡®å ³ç³»æ¯è¿æ ·çï¼hashCodeåç碰æï¼åä¸æ ä¸å®å²çªï¼èä¸æ å²çªï¼hashCode并ä¸ä¸å®ç¢°æ
ä¸ææå°ï¼å¨jdk1.8以åHashMapçå®ç°æ¯æ£å表 = æ°ç» + é¾è¡¨ï¼ä½æ¯å°ç®å为æ¢æ们è¿æ²¡æçå°é¾è¡¨èµ·å°çä½ç¨ãäºå®ä¸ï¼HashMapå¼å ¥é¾è¡¨çç¨æå°±æ¯è§£å³ä¸æ å²çªã
ä¸å¾æ¯å¼å ¥é¾è¡¨åçæ£å表ï¼
å¦ä¸å¾æ示ï¼å·¦è¾¹çç«æ¡ï¼æ¯ä¸ä¸ªå¤§å°ä¸ºçæ°ç»ï¼å ¶ä¸åå¨çæ¯é¾è¡¨ç头ç»ç¹ï¼æ们ç¥éï¼æ¥æé¾è¡¨ç头ç»ç¹å³å¯è®¿é®æ´ä¸ªé¾è¡¨ï¼æ以认为è¿ä¸ªæ°ç»ä¸çæ¯ä¸ªä¸æ é½åå¨çä¸ä¸ªé¾è¡¨ãå ¶å ·ä½åæ³æ¯ï¼å¦æåç°ä¸æ å²çªï¼ååæå ¥çèç¹ä»¥é¾è¡¨çå½¢å¼è¿½å å°åä¸ä¸ªèç¹çåé¢ã
è¿ç§ä½¿ç¨é¾è¡¨è§£å³å²çªçæ¹æ³å«åï¼æé¾æ³ï¼åå«é¾å°åæ³ï¼ãHashMap使ç¨çå°±æ¯æé¾æ³ï¼æé¾æ³æ¯å²çªåç以åç解å³æ¹æ¡ã
Qï¼æäºæé¾æ³ï¼å°±ä¸ç¨æ å¿åçå²çªåï¼
Aï¼å¹¶ä¸æ¯ï¼ç±äºå²çªçèç¹ä¼ä¸åçå¨é¾è¡¨ä¸è¿½å ï¼å¤§éçå²çªä¼å¯¼è´å个é¾è¡¨è¿é¿ï¼ä½¿æ¥è¯¢æ§è½éä½ãæ以ä¸ä¸ªå¥½çæ£å表çå®ç°åºè¯¥ä»æºå¤´ä¸åå°å²çªåççå¯è½æ§ï¼å²çªåççæ¦çååå¸å½æ°è¿åå¼çååç¨åº¦æç´æ¥å ³ç³»ï¼å¾å°çåå¸å¼è¶ååï¼å²çªåççå¯è½æ§è¶å°ã为äºä½¿åå¸å¼æ´ååï¼HashMapå é¨åç¬å®ç°äºhash()æ¹æ³ã
以ä¸æ¯æ£å表çåå¨ç»æï¼ä½æ¯å¨è¢«è¿ç¨å°HashMapä¸æ¶è¿æå ¶ä»éè¦æ³¨æçå°æ¹ï¼è¿éä¼è¯¦ç»è¯´æã
ç°å¨æä»¬æ¸ æ¥äºæ£å表çåå¨ç»æï¼ç»å¿ç人åºè¯¥å·²ç»åç°äºä¸ä¸ªé®é¢ï¼Javaä¸æ°ç»çé¿åº¦æ¯åºå®çï¼æ 论åå¸å½æ°æ¯å¦ååï¼éçæå ¥å°æ£å表ä¸æ°æ®çå¢å¤ï¼å¨æ°ç»é¿åº¦ä¸åçæ åµä¸ï¼é¾è¡¨çé¿åº¦ä¼ä¸æå¢å ãè¿ä¼å¯¼è´é¾è¡¨æ¥è¯¢æ§è½ä¸ä½³ç缺ç¹åºç°å¨æ£å表ä¸ï¼ä»è使æ£å表失å»åæ¬çæä¹ã为äºè§£å³è¿ä¸ªé®é¢ï¼HashMapå¼å ¥äºæ©å®¹ä¸è´è½½å åã
以ä¸æ¯åæ©å®¹ç¸å ³çä¸äºæ¦å¿µå解éï¼
Psï¼æ©å®¹è¦éæ°è®¡ç®ä¸æ ï¼æ©å®¹è¦éæ°è®¡ç®ä¸æ ï¼æ©å®¹è¦éæ°è®¡ç®ä¸æ ï¼å 为ä¸æ ç计ç®åæ°ç»é¿åº¦æå ³ï¼é¿åº¦æ¹åï¼ä¸æ ä¹åºå½éæ°è®¡ç®ã
å¨1.8åå ¶ä»¥ä¸çjdkçæ¬ä¸ï¼HashMapåå¼å ¥äºçº¢é»æ ã
红é»æ çå¼å ¥è¢«ç¨äºæ¿æ¢é¾è¡¨ï¼ä¸æ说å°ï¼å¦æå²çªè¿å¤ï¼ä¼å¯¼è´é¾è¡¨è¿é¿ï¼éä½æ¥è¯¢æ§è½ï¼ååçhashå½æ°è½ææçç¼è§£å²çªè¿å¤ï¼ä½æ¯å¹¶ä¸è½å®å ¨é¿å ãæ以HashMapå å ¥äºå¦ä¸ç§è§£å³æ¹æ¡ï¼å¨å¾é¾è¡¨å追å èç¹æ¶ï¼å¦æåç°é¾è¡¨é¿åº¦è¾¾å°8ï¼å°±ä¼å°é¾è¡¨è½¬ä¸ºçº¢é»æ ï¼ä»¥æ¤æåæ¥è¯¢çæ§è½ã
hash / hashtable(linux kernel 哈希表)
哈希表,或称为散列表,是一种高效的数据结构,因其插入和查找速度的优势而备受关注。然而,其空间利用率并不固定,需要权衡。让我们通过实例来深入理解它的作用和工作原理。
想象一个场景:我们需要高效地存储和访问大量数据。首先,常规的数组方法,如普通数组和有序数组,虽然插入简单,但查找效率低,尤其是在数据量较大时。例如,查找可能需要对数千个元素进行比较。有序数组通过牺牲增删效率来提升查询,但数组空间固定且可能浪费大量资源。
链表提供了更灵活的增删操作,但随机访问困难,适合数据频繁变动的情况。红黑树在查询和增删效率上表现优秀,但此处暂不讨论。庞大的数组虽然理论上能快速查找,但实际操作中难以实现,因为它需要预先预估并准备极大数据空间。
这时,哈希表登场了。它利用哈希函数将数据映射到一个较小的数组中,即使存在冲突(不同数据映射到同一地址),通过链表解决,仍然能显著提升查找效率。例如,即使身份证号的哈希结果可能有重复,但实际冲突相对较少,通过链表链接,平均查找次数大大减少。
使用哈希表包括简单的步骤:包含头文件,声明和初始化哈希表,添加节点,以及通过哈希键查找节点。在实际源码中,如Linux kernel的hash.h和hashtable.h文件,哈希表的初始化和操作都是基于这些步骤进行的。
总结来说,哈希表在大数据场景中通过计算直接定位数据,显著提高效率,尤其是在数据量增大时。如果你对Linux kernel的哈希表实现感兴趣,可以关注我的专栏RTFSC,深入探讨更多源码细节。