【咸鱼之王游戏源码】【模板博客源码】【12.23友价源码】ai软件源码_aide软件源码网
1.【解UE4源码】AI行为树系统 其二 一棵行为树是软件软件怎么被运行起来的
2.Autoware.io源码编译安装
3.AI与PDE(七):AFNO模型的源代码解析
4.AI Code Translator 编程语言自动转换工具源码分析
5.OpenAI/Triton MLIR 第零章: 源码编译
6.腾讯T2I-adapter源码分析(1)-运行源码跑训练
【解UE4源码】AI行为树系统 其二 一棵行为树是怎么被运行起来的
在本系列的第三部分,我们将深入探讨行为树的源码源码运行过程。首先,软件软件行为树的源码源码运行分为几个关键步骤:发起行为树运行
行为树的运行可以通过两种方式启动:调用AAIController::RunBehaviorTree()函数。
通过Run Behavior任务节点执行子行为树。软件软件
抽象逻辑理解
理解流程时,源码源码咸鱼之王游戏源码想象一个抽象流程图,软件软件我们将讲解分为蓝色泳道(检查和加载)和红色泳道(初始化和执行)。源码源码检查和加载子树
开始前,软件软件UBehaviorTreeComponent会对子树进行三项检查:确保子树使用的源码源码黑板资源与父树一致。
确保全局的软件软件UBehaviorTreeManager可用。
确认发起节点的源码源码父节点是否允许push新子树,如SimpleParallel节点限制。软件软件
树的源码源码加载
检查通过后,进入资源加载阶段,软件软件首先尝试从缓存获取数据,避免重复加载。缓存和数据初始化
加载行为树资源,如果缓存中有匹配的模板,直接返回。否则,创建新模板并计算节点初始化信息,包括内存需求和执行顺序。执行树的初始化
加载完成后,进一步在UBehaviorTreeComponent::PushInstance中初始化FBehaviorTreeInstance和FBehaviorTreeInstanceId,设置内存偏移,填充数组,然后将新实例入栈并标记为活跃。行为树的执行
最后,执行新树,从根节点的service开始,然后执行根节点,进入下一轮迭代。后续的节点执行细节将作为下一部分内容。Autoware.io源码编译安装
要编译安装Autoware.io,首先请确保已安装ROS1,如Ubuntu .版本的Melodic。以下步骤将指导你完成依赖安装及源码编译过程。安装依赖
1. 对于CUDA的支持(可选但建议),你需要下载CUDA .0,链接位于developer.nvidia.com/cuda。安装时,遇到驱动安装询问时选择n,模板博客源码后续步骤默认安装即可。 2. 安装cudnn,从developer.nvidia.com/rd...获取并进行安装。在cuda目录下进行软链接配置,并通过验证测试。其他依赖安装
3. 安装eigen3.3.7,接着是opencv3,安装时需先安装依赖库,然后解压、配置和编译。源码下载与编译
4. 创建新的工作区,下载并配置工作区,然后下载Autoware.ai源码。 5. 使用rosdep安装依赖库,有CUDA版本和无CUDA版本两种编译方式。测试与问题解决
6. 下载并运行demo,可能遇到的问题包括编译错误和链接问题。问题1:calibration_publisher报错,需修改CMakeList.txt文件。
问题2:ndt_gpu编译错误,需替换Eigen3Config.cmake文件中的版本信息。
问题3:opencv链接问题,需要检查和调整。
问题4:rosdep更新慢,可通过修改源码和配置文件解决。
问题5:runtime manager花屏,需安装wxPython 4.和libsdl1.2-dev。
通过上述步骤,你应该能够成功编译并测试Autoware.io。如有任何疑问,查阅官方文档或社区论坛寻求帮助。AI与PDE(七):AFNO模型的源代码解析
本文旨在解析AFNO模型的源代码,帮助读者理解模型细节与主干结构。首先,AFNO模型的主干框架在afnonet.py文件中定义,通过类AFNONet实现。模型的核心功能封装在多个类与函数中,依据代码注释逐步解析。
在代码中,forward_features函数负责模型的核心逻辑,包括patch切割与mixing过程。这些操作由PatchEmbed类实现。12.23友价源码位置编码self.pos_embed通过高斯初始化得到,增加模型的表示能力。
关键模块AFNO2d位于代码中,它基于FNO的原理,负责处理输入数据。AFNO2d模块在forward_features函数中通过循环调用,实现数据的转换与混合。
经过数个L layer处理后,模型进入类似解码器的结构,用于将中间结果映射为目标结果。这一过程通过self.head(x)实现,以解决特定分类问题。
本文通过梳理代码流程与结构图,直观展示了AFNO模型的工作原理。读者可参考AFNO的GitHub源代码与论文,深入理解细节。后续文章将继续探讨基于AFNO模型框架的其他应用,如FourCastNet。
AI Code Translator 编程语言自动转换工具源码分析
近期,关注到开源库 PuerTS 提及“Lua到TS的AI转写”。基于此,我探究了一款基于GPT的代码翻译工具——“AI Code Translator”。此工具能将一种编程语言自动转换为另一种语言。PuerTS提及的“AI转写”可能采用了相似原理。本文将深入分析“AI Code Translator”中“转写”部分的实现。
项目地址:未提供
项目截图:未提供
尝试使用在线工具 aicodeconvert.com/ 将一段TS代码转为Lua。实际体验中,AI转换的Lua代码保留了TS代码的含义、结构和写法,但需要开发者补充一些在目标语言中不存在的类型或函数,例如Lua的class。此外,名称保持与源代码一致,但如果源代码中使用特定库或框架,转换后的代码同样使用该库,但目标语言可能并未提供相应版本,需要开发者自行实现或先用AI转写源库。
分析工具的前端使用next.js编写,核心功能在Index.ts文件中,包含createPrompt和OpenAIStream两个关键方法。createPrompt负责构造AI翻译所需的提示词,OpenAIStream则封装了与OpenAI API的源码博客下载器交互。createPrompt方法根据输入语言、输出语言以及代码内容构建提示词,旨在让AI理解翻译任务并生成目标代码。
创建提示词的方法分为三个主要分支,分别针对自然语言输入、自然语言输出以及具体编程语言的输入和输出情况。在构建提示词时,采用身份说明、任务描述、举例、具体文本填充和输出格式续写等步骤,旨在引导AI完成代码翻译。
对于大工程的转写,建议采用以下改进策略:分析代码依赖关系,优先转写底层代码;分段处理代码,避免超过AI处理的token长度限制;对AI生成的代码进行人工检查和测试,提升代码质量。这些技巧可帮助开发者更高效地利用AI转写工具。
总结,AI转写工具“AI Code Translator”通过简单的提示词构造实现代码自动转换。虽然适用于小型代码段,但对于大工程的转写还需结合人工辅助,以提高效率和代码质量。此外,若目标是学习和开发网络游戏,特别是手机游戏或游戏行业相关工作,推荐阅读《Unity3D网络游戏实战(第2版)》,本书由作者总结多年经验编写,提供实用的教程和知识,非常适合这一领域的需求。
OpenAI/Triton MLIR 第零章: 源码编译
本文旨在深入探讨开源AI项目OpenAI Triton MLIR,着重介绍Triton作为编程语言与编译器在GPU加速计算领域的应用与优化。Triton为用户提供了一种全新的方式,通过将其后端接入LLVM IR,利用NVPTX生成GPU代码,进而提升计算效率。相较于传统CUDA编程,Triton无需依赖NVIDIA的nvcc编译器,直接生成可运行的机器代码,体现出其在深度学习与数据科学领域的高性能计算潜力。Triton不仅支持NVIDIA GPU,还计划扩展至AMD与Intel GPU,系统运维 源码其设计基于MLIR框架,通过Dialect支持多样化后端。本文将从源码编译角度出发,逐步解析Triton的设计理念与优化策略,为研究编译技术和系统优化的工程师提供宝贵资源。
首先,需要访问Triton的官方网站,克隆其官方代码库,以便后续操作。构建过程涉及两个重要依赖:LLVM与pybind。LLVM作为Triton的核心后端,通过将高级Python代码逐步转换至LLVM IR,最终生成GPU可运行代码,体现了其在计算优化领域的优势。pybind组件则用于封装C++/CUDA或汇编代码,实现Python DSL与高性能组件的无缝集成。
接下来,将LLVM与pybind分别编译安装,通过手动配置指定路径,确保编译过程顺利进行。LLVM的安装对于基于Triton进行二次开发的工程师和研究人员至关重要,因为它为Triton提供了强大的计算基础。在特定的commit ID下编译Triton,确保与后续版本兼容。
在编译过程中,配置pybind同样至关重要,它允许用户通过Python API调用高性能组件,实现自动化生成高性能算子。完成编译后,生成的.so文件(libtriton.so)为后续Triton的Python接口提供了支持。
将libtriton.so移动至triton/python/triton/_C目录下,确保Python路径正确配置,实现无缝导入与调用。通过简单的import triton命令,即可开启Triton的开发之旅。验证Triton性能,可以选择tutorials目录下的示例代码,如-matrix-multiplication.py,通过运行该脚本,观察Triton在GPU上的性能表现。
Triton在NVGPU上的成熟映射路线,从抽象的Python DSL到贴近GPU层面的IR,最终生成高效机器代码,体现了其在高性能计算领域的优越性。Triton未来的发展蓝图将支持更多前端语言,对接不同硬件厂商的硬件,实现高效映射,满足多样化计算需求。
腾讯T2I-adapter源码分析(1)-运行源码跑训练
稳定扩散、midjourney等AI绘图技术,为人们带来了令人惊叹的效果,不禁让人感叹技术发展的日新月异。然而,AI绘图的可控性一直不是很好,通过prompt描述词来操控图像很难做到随心所欲。为了使AI绘制的图像更具可控性,Controlnet、T2I-adapter等技术应运而生。本系列文章将从T2I-adapter的源码出发,分析其实现方法。
本篇是第一篇,主要介绍源码的运行方法,后续两篇将以深度图为例,分别分析推理部分和训练部分的代码。分析T2I-Adapter,也是为了继续研究我一直在研究的课题:“AI生成同一人物不同动作”,例如:罗培羽:stable-diffusion生成同一人物不同动作的尝试(多姿势图),Controlnet、T2I-adapter给了我一些灵感,后续将进行尝试。
T2I-Adapter论文地址如下,它与controlnet类似,都是在原模型增加一个旁路,然后对推理结果求和。
T2I-Adapter和controlnet有两个主要的不同点,从图中可见,其一是在unet的编码阶段增加参数,而controlnet主要是解码阶段;其二是controlnet复制unit的上半部结构,而T2I-Adapter使用不同的模型结构。由于采用较小的模型,因此T2I-Adapter的模型较小,默认下占用M左右,而controlnet模型一般要5G空间。
首先确保机器上装有3.6版本以上python,然后把代码clone下来。随后安装依赖项,打开requirements.txt,可以看到依赖项的内容。然后下载示例,下载的会放到examples目录下。接着下载sd模型到model目录下,再下载T2I-Adapter的模型到目录下,模型可以按需到huggingface.co/TencentA...下载。这里我下载了depth和openpose。sd模型除了上述的v1-5,也还下载了sd-v1-4.ckpt。
根据文档,尝试运行一个由深度图生成的例子,下图的左侧是深度图,提示语是"desk, best quality, extremely detailed",右侧是生成出来的。运行过程比较艰辛,一开始在一台8G显存的服务器上跑,显存不够;重新搭环境在一台G显存的服务器上跑,还是不够;最后用一台G显存的服务器,终于运行起来了。
接下来尝试跑openpose的例子,下图左侧是骨架图,提示词为"Iron man, high-quality, high-res",右侧是生成的图像。
既然能跑推理,那么尝试跑训练。为了后续修改代码运行,目标是准备一点点数据把训练代码跑起来,至于训练的效果不是当前关注的。程序中也有训练的脚步,我们以训练深度图条件为例,来运行train_depth.py。
显然,习惯了,会有一些问题没法直接运行,需要先做两步工作。准备训练数据,分析代码,定位到ldm/data/dataset_depth.py,反推它的数据集结构,然后准备对应数据。先创建文件datasets/laion_depth_meta_v1.txt,用于存放数据文件的地址,由于只是测试,我就只添加两行。然后准备,图中的.png和.png是结果图,.depth.png和.depth.png是深度图,.txt和.txt是对应的文本描述。
文本描述如下,都只是为了把代码跑起来而做的简单设置。设置环境变量,由于T2I-Adapter使用多卡训练,显然我也没这个环境,因此要让它在单机上跑。而代码中也会获取一些环境变量,因此做简单的设置。
做好准备工作,可以运行程序了,出于硬件条件限制,只能把batch size设置为1。在A显卡跑了约8小时,完成,按默认的配置,模型保存experiments/train_depth/models/model_ad_.pth。那么,使用训练出来的模型试试效果,能生成如下(此处只是为了跑起来代码,用训练集来测试),验证了可以跑起来。
运行起来,但这还不够,我们还得看看代码是怎么写法,下一篇见。
PS:《直观理解AI博弈原理》是笔者写的一篇长文,从五子棋、象棋、围棋的AI演进讲起,从深度遍历、MAX-MIN剪枝再到蒙特卡罗树搜索,一步步介绍AI博弈的原理,而后引出强化学习方法,通俗易懂地介绍AlphaGo围棋、星际争霸强化学习AI、王者荣耀AI的一些强化学习要点,值得推荐。
AUTOMATIC的webui是近期很流行的stable-diffusion应用,它集合stable-diffusion各项常用功能,还通过扩展的形式支持controlnet、lora等技术,我们也分析了它的源码实现,写了一系列文章。
大神用Python做个AI出牌器,实现财富自由附源码
在互联网上,我注意到一个有趣的开源项目——快手团队的DouZero,它将AI技术应用到了斗地主游戏中。今天,我们将通过学习如何使用这个原理,来制作一个能辅助出牌的欢乐斗地主AI工具,也许它能帮助我们提升游戏策略,迈向财富自由的境界。 首先,让我们看看AI出牌器的实际运作效果: 接下来,我们逐步构建这个AI出牌器的制作过程:核心功能与实现步骤
UI设计:首先,我们需要设计一个简洁的用户界面,使用Python的pyqt5库,如下是关键代码:
识别数据:在屏幕上抓取特定区域,通过模板匹配识别AI的手牌、底牌和对手出牌,这部分依赖于截图分析,核心代码如下:
地主确认:通过截图确定地主身份,代码负责处理这一环节:
AI出牌决策:利用DouZero的AI模型,对每一轮出牌进行判断和决策,这部分涉及到代码集成,例如:
有了这些功能,出牌器的基本流程就完成了。接下来是使用方法:使用与配置
环境安装:你需要安装相关库,并配置好运行环境,具体步骤如下:
位置调整:确保游戏窗口设置正确,AI出牌器窗口不遮挡关键信息:
运行测试:完成环境配置后,即可启动程序,与AI一起战斗:
最后,实际操作时,打开斗地主游戏,让AI在合适的时间介入,体验AI带来的智慧策略,看看它是否能帮助你赢得胜利!OpenAI 开源的免费 AI 语音转文字工具 - Whisper,一步一步本地部署运行
OpenAI 推出的开源免费工具 Whisper,以其出色的语音识别功能吸引了不少关注。这款模型不仅能够进行多语言的语音转文本,还能进行语音翻译和语言识别,实用价值极高。市面上许多语音转文字服务如讯飞语记等都收费,而Whisper作为开源选择,无疑是一个经济实惠且性能强大的解决方案。
想在本地体验Whisper,首先需要为Windows设备安装ffmpeg和rust。ffmpeg可以从ffmpeg.org下载并配置环境变量,而rust则可以从rust-lang.org获取并确保命令行可用。接着,创建一个python虚拟环境,安装Whisper所需的依赖库。
运行Whisper的过程相当直接。通过命令行,只需提供音频文件如"Haul.mp3",并指定使用"medium"模型(模型大小从tiny到large递增)。首次运行时,Whisper会自动下载并加载模型,然后开始识别并输出文本,同时将结果保存到文件中。如果想在Python代码中集成,也相当简单。
如果你对此技术感兴趣,不妨亲自尝试一下。项目的源代码可以在github.com/openai/whisper找到。这不仅是一次AI技术的体验,还可能开启语音转文字的新篇章。更多详情可参考gpt.com/article/的信息。
标签推荐:#AI技术 #OpenAI开源 #Whisper模型 #语音转文字 #ChatGPT应用