1.ROS中MPC局部路径规划器使用方法及源码流程解读
2.ROS 2中级教程——6 用Launch启动/监视多个节点
3.Cartographer源码详解|(2)Cartographer_ros
4.ROS学习笔记@ROS安装
5.ROS2的码学学习经验
6.ROS入门笔记(七):详解ROS文件系统
ROS中MPC局部路径规划器使用方法及源码流程解读
本文将详细介绍ROS导航框架中MPC局部路径规划器mpc_local_planner的使用方法,并对其源码进行解读,码学梳理其规划流程。码学内容分为MPC模型预测控制算法简介、码学mpc_local_planner使用方法、码学mpc_local_planner源码解读与规划流程梳理三个部分。码学新天地源码
一、码学MPC模型预测控制算法简介
MPC的码学设计和实施包含三个步骤。首先在k时刻,码学需要估计/测量出系统当前状态。码学MPC的码学优点在于处理多变量、多约束系统,码学适应动态环境,码学并提供优化性能。码学但它的码学计算复杂度较高,适用于需要高精度控制的应用。
二、mpc_local_planner使用方法
在ROS现有开源MPC模型预测控制算法的局部路径规划器插件中,mpc_local_planner功能包广受欢迎。它与teb_local_planner出自同一研究机构,因此在流程及上有许多相似之处。以下是mpc_local_planner的使用步骤:
1. 下载mpc_local_planner功能包并将其放置在ROS工作空间的src文件夹下。
2. 配置环境,执行以下指令安装所需依赖和环境。
3. 使用catkin_make对mpc_local_planner功能包进行编译。
4. 可根据需要执行以下语句中的一个或多个,来使用功能包自带的示例,对功能包是否能够正常工作,并可对其性能进行测试。
5. 在启动move_base的launch文件中,配置局部路径规划器插件为mpc_local_planner/MpcLocalPlannerROS,并根据机器人的dhcp snooping源码实际情况,设定参数clearing_rotation_allowed的值来设定在规划时是否允许机器人旋转。
6. 在上述move_base节点配置中调用mpc_local_planner的参数配置文件mpc_local_planner_params.yaml。
7. 进行效果测试,并根据测试效果对参数进行调节。
ROS 2中级教程——6 用Launch启动/监视多个节点
ROS 2中的launch系统负责描述和执行系统配置,包括运行程序、位置、参数和约定。它还负责监视进程状态并响应变化。使用Python编写的Launch文件能启动、停止不同节点并触发事件。launch_ros软件包提供底层非ROS特有的launch框架。
要创建ROS 2 Launch文件,首先在工作空间用ros2 pkg create创建软件包,并建立launch目录。Python软件包内需在setup.py中告知构建工具所有launch文件。C++软件包则在CMakeLists.txt中添加安装launch文件的指令。Launch文件定义generate_launch_description()函数,返回供ros2 launch命令使用的LaunchDescription对象。
launch文件的后缀通常为.launch.py,但也可用._launch.py。在文件中,应定义generate_launch_description()函数,该函数返回ros2 launch命令使用的LaunchDescription对象。通常使用ROS 2工具调用launch文件。
示例launch文件启动两个节点,一个管理生命周期,另一个在状态变化时自动发出事件。这些事件可以通过其他动作或事件响应,如启动另一个节点。查看launch_ros源代码以获取更多关于ROS 2 launch功能的炸死你源码详细信息。
Cartographer源码详解|(2)Cartographer_ros
上一篇文章深入分析了传感器数据的流向,接下来让我们继续探讨传感器格式的转换与类型变换。这部分内容在sensor_bridge.cc文件中。在处理传感器的坐标变换时,我们需要运用三维空间刚体运动的知识,先进行简要回顾,以助于理解代码。
三维空间刚体运动涉及向量内积与外积。向量内积的计算公式如下,表示两个向量的点乘。向量外积则是一个向量,其方向垂直于两个向量,大小为两向量张成四边形的有向面积,计算公式如下。
旋转和平移是欧氏变换的两个关键部分。旋转涉及单位正交基的变换,形成旋转矩阵(Rotation matrix),该矩阵的各分量由两组基之间的内积组成,反映了旋转前后同一向量坐标的变化关系。平移则通过向旋转后的坐标中加入平移向量t实现。通过旋转矩阵R和平移向量t,我们可以完整描述欧氏空间中的坐标变换关系。
为了简化变换过程,引入齐次坐标和变换矩阵。在三维向量末尾添加1形成四维向量,进行线性变换。变换矩阵T能够将两次变换叠加简化为一个操作,便于后续计算。
Cartographer的坐标转换程序位于transform文件夹下的rigid_transform中,用于求解变换矩阵的逆。
在sensor_bridge类中,doom引擎源码构造函数将传入配置参数,对里程计数据进行处理。首先将ros时间转换为ICU时间,然后利用tf_bridge_.LookupToTracking函数找到tracking坐标系与里程计child_frame_id之间的坐标变换。在ToOdometryData函数中,将里程计的footprint的pose转换为tracking_frame的pose,并最终将结果转换为carto::sensor::OdometryData的数据类型。
HandleOdometryMessage函数将传感器数据类型与坐标系转换完成后,调用trajectory_builder_->AddSensorData进行数据处理。对于雷达数据,首先转换为点云格式,然后对点云进行坐标变换,并调用trajectory_builder_->AddSensorData进行数据处理。
IMU数据处理中,要求平移分量小于1e-5,然后调用trajectory_builder_->AddSensorData对数据进行处理。
在雷达数据处理部分,首先将点云数据分段,然后传给HandleRangefinder处理,将点云坐标变换到tracking_frame坐标系下,调用trajectory_builder_->AddSensorData函数进行数据处理。
总结本章内容,我们详细解析了SensorBridge类,对传感器数据进行了转换和传输。通过Node类、MapBuilderBridge类和SensorBridge类,我们对Cartographer_ros部分的代码有了基本了解。接下来,我们将深入学习cartographer。
ROS学习笔记@ROS安装
安装ROS前的准备工作:确保Cmake版本 安装ROS前,务必检查电脑上是Lumise网站源码否已安装Cmake。如果安装了新版本,需避免版本冲突,可选择在安装ROS后安装所需的Cmake版本。要指定特定版本的cmake,需要相应操作。 选择适合的ROS版本 不同Ubuntu版本对应不同的ROS版本,如Ubuntu .对应RS Melodic。务必确保安装正确的版本,可通过ROS Wiki查阅对应信息。安装步骤
1. 更新软件源与添加ROS源 确保Ubuntu软件源的更新,并更换为国内源,如阿里云、清华或中科大,以提高下载速度。 2. 设置ROS安装密钥 公钥是ROS安装的重要环节,需执行特定命令获取并设置。 3-4. 更新软件源与安装ROS 更新Ubuntu源后,安装ROS桌面完整版,包括ROS、rqt、rviz等,以及基础库。 5. 设置环境变量和安装ROS工具 设置ROS环境变量,便于在新shell中自动激活。同时,安装ROS的构建和管理工具,如rosinstall。 6. 初始化rosdep rosdep是ROS开发中的必备工具,通过特定命令初始化并可能需要更新。 7. 避免网络问题:解决rosdep更新问题 如果遇到更新超时,可通过修改hosts和resolv.conf,或本地下载更新文件来解决。安装检查
运行小海龟和rviz以验证安装 通过运行roscore和相关命令,测试ROS核心功能如小海龟和rviz的运行情况。 源码安装与后续学习 对于源码安装,可参考Melodic版本的Source安装文档,以及相关教程,如博客文章。ROS2的学习经验
ROS2广泛应用于工业自动化、服务机器人、智能交通、医疗保健和农业机器人等领域。相较于ROS,ROS2去除了部分缺点,并被认为是未来的趋势。尽管ROS2发展时间不长,生态系统尚未完善,学习资源较少,但学习它并推动生态发展是明智之举。个人学习经验表明,应具备编程语言(C++和Python)、Ubuntu系统命令使用、C++智能指针(如make_ptr和共享指针)、命名空间、VSCode使用、多线程编程、数学知识(坐标转换、pnp解算、旋转度RPY、四元素等)、CmakeLists.txt语法等基础。
初学者应从视频资源入手学习ROS2基础,推荐赵虚左老师的视频课程,使用鱼香ROS工具进行实践。首先,通过赵虚左老师的视频学习ROS2基础,然后进一步使用鱼香ROS文档深入学习导航2(Navigation2)部分。面对导航2框架资料较少、难以理解的挑战,建议仔细积累并参考官方文档的英文版本与鱼香ROS的翻译文档。遇到文档中错误的代码时,不要怀疑,可以尝试使用AI解决问题。
进阶阶段,学习导航2(Navigation2)框架,特别关注官方文档与鱼香ROS翻译文档的结合使用。理解框架原理后,通过实际项目实践,如使用鱼香ROS的开源项目,让机器人在仿真环境中运行起来。在实践过程中,会遇到手动初始化位姿与标点导航的问题,通过代码自动导航可简化流程。使用nav2框架提供的Python API,可以方便地实现决策功能,如使用c++编写可能较为复杂。理解nav2源码,如复制和修改src avigation av2_simple_commander中的代码,或使用nav2_simple_commander\launch文件启动特定节点。
为了构建和导航,需准备机器人模型(urdf)、仿真环境(world)等,放入description功能包中。启动仿真环境后,建图并获取地图信息。在实车或仿真导航中,确保定位准确,避免机器人在接近目标时徘徊。当到达目标距离0.5米时开始计时,若5秒内未到达目标,则取消当前导航并转向下一个目标。理解nav2框架参数的含义,根据项目需求进行调整。
构建ROS2项目时,需要新建navigation2功能包,管理nav2框架的启动与配置。地图、参数文件(如av2_params.yaml)应放入相应文件夹中,根据需要调整参数,例如使用仿真时间、定位方法和控制器。启动nav2框架后,通过手动初始化位姿进行仿真导航,或结合雷达、IMU等设备数据构建完整tf图,实现机器人导航。精准导航需要长时间的学习和实践,确保定位准确,避免机器人到达目标时的徘徊问题。
ROS入门笔记(七):详解ROS文件系统
ROS入门笔记(七):详细解析ROS文件系统 理解ROS工程的基础架构是关键。本章深入探讨了ROS的工程结构,特别是catkin编译系统、工作空间的创建与组织、package的构建以及常见文件的作用。这些内容有助于我们正确地建立和管理ROS项目。Catkin编译系统
ROS项目采用Catkin编译系统,它是基于CMake的高效工具,用于大型项目的编译与管理。早期的rosbuild已不适用,Catkin在Groovy版本中引入,提供了简化编译、更好的可移植性和跨平台支持,如今大部分核心软件包已切换至Catkin。工作空间结构
Catkin工作空间就像一个仓库,包含src、build和devel三个核心路径。src存放源代码,build用于编译,而devel则管理环境变量。创建和编译工作空间是ROS开发的基础步骤。Package的组织
Package是工作空间的基本单元,包含CMakeLists.txt和package.xml等文件。CMakeLists.txt定义编译规则,而package.xml则是包的详细描述,如依赖和许可信息。其他常见文件
launch文件:打包并启动程序,指定参数和控制指令。
msg/srv/action文件:自定义数据结构,用于消息、服务和动作的交互。
urdf/xacro:描述机器人模型的物理结构。
yaml文件:存储参数配置。
3D模型文件:dae/stl,用于3D模型展示。
rviz文件:配置RViz视窗的显示设置。
掌握这些基础文件和结构,是ROS开发和调试的基础。建议初学者从Catkin系统开始学习,逐步构建和管理项目。ROS自学笔记九:创建并构建ROS功能包
了解并运用ROS(Robot Operating System)是构建机器人系统的重要技能。在上一期文章中,我们深入探讨了Gazebo的使用,而这一期,我们将聚焦于如何创建和构建ROS功能包。首先,确保你已安装了ROS,若未安装,可参考官方文档进行。接下来,通过以下步骤开始你的编程之旅:
1. 打开终端并切换至你计划创建功能包的目录。
2. 利用`catkin_create_pkg`命令创建功能包,指定功能包名称及依赖软件包,例如:创建名为"my_package"的功能包,并添加"roscpp"与"std_msgs"依赖。
3. 进入新创建的功能包目录。
4. 在功能包中添加源代码文件或资源。在`src`文件夹内编写C++或Python代码,在`launch`文件夹中创建启动文件。
5. 返回至工作区根目录,执行构建功能包操作。此步骤将编译所有ROS功能包并生成可执行文件。
6. 运行ROS节点。使用`rosrun`命令执行你的ROS节点,确保功能包在正确路径下。