欢迎来到【转到dll项目源码】【游戏2048 源码】【豆豆棋牌源码】linux free源码-皮皮网网站!!!

皮皮网

【转到dll项目源码】【游戏2048 源码】【豆豆棋牌源码】linux free源码-皮皮网 扫描左侧二维码访问本站手机端

【转到dll项目源码】【游戏2048 源码】【豆豆棋牌源码】linux free源码

2025-01-05 11:47:52 来源:{typename type="name"/} 分类:{typename type="name"/}

1.free 命令示例 | Linux 中国
2.Linux之free命令
3.linux free命令详解和使用实例
4.linux free命令详解
5.linux free命令
6.详谈Linux内核《系统调用》(1)———kmalloc/ Kfree实现与分析

linux free源码

free 命令示例 | Linux 中国

       Linux中的free命令能帮助你深入了解系统的内存(RAM)使用情况,以及是否启用了交换。下面将演示如何高效利用这个命令。

       要使用free命令,无需复杂的步骤。只需在终端输入命令即可。转到dll项目源码

       free命令的语法如下:

       有多个选项可调整命令行为。接下来,分享一些常用的free命令选项。

       不带任何选项的free命令输出如下:

       这里显示了内存的详细信息,包括总内存、已用内存、可用内存、缓冲区和缓存大小等。如果你希望以更易读的格式显示数据,可以使用-h选项:

       此选项将以人类可读的形式(如KB或GB)显示值。

       想要连续显示统计数据?可以使用-s选项,以特定时间间隔刷新信息。例如:

       此命令将每秒刷新一次统计信息。

       若需控制刷新次数,可以使用-c选项:

       命令将刷新指定次数的统计信息。

       若想自定义输出数据类型,可以使用以下标志:

       例如,以MB为单位显示内存统计信息的命令如下:

       若要获取物理内存和交换内存的总和,可以使用-t选项:

       至此,已详细介绍了free命令的使用方法,包括如何以人类可读形式显示信息、连续刷新统计数据、定义刷新次数、指定输出数据类型及获取内存总和。接下来,请尝试以下练习题:

       练习题:

       以人类可读形式显示内存信息。

       每秒刷新一次统计信息。游戏2048 源码

       显示统计数据3次。

       以MB为单位显示内存统计信息。

       获取物理内存和交换内存的总和。

       希望这些练习能帮助你熟练掌握free命令。如果你有任何疑问,欢迎在评论区提问。此外,如果你对接下来的内容有任何建议,请分享你的想法。感谢阅读,期待你的反馈!

Linux之free命令

       free命令在Linux系统中扮演着显示内存使用情况的关键角色,它能显示出物理内存、swap内存以及内核使用的buffer。此命令是系统监控工具中频繁使用的。

       free命令的格式是free[参数]。

       其主要功能是展示系统内存的使用与空闲状态,包括物理内存、swap内存和内核缓冲区内存,而共享内存则被忽略。

       关于buffers和cached的区别,我们需要了解buffer和cache的定义。buffer指的是buffer cache,通常翻译为“缓冲区”,它是针对磁盘块的读写操作。而cache指的是page cache,翻译为“页高速缓存”,它主要是内核实现的磁盘缓存,用来减少对磁盘的I/O操作。buffer cache没有文件概念,只是将磁盘上的块直接搬到内存中。而page cache缓存的豆豆棋牌源码是内存页面,它可以缓存普通文件、块设备文件和内存映射文件的读写操作。

       在free命令的输出中,free列代表真正未被使用的物理内存数量,而available列则是从应用程序的角度看的可用内存数量。Linux内核会将一部分内存用于缓存磁盘数据,当应用程序需要内存时,内核会从buffer和cache中回收内存来满足需求。所以,从应用程序的角度来看,available等于free加上buffer和cache。

       swap space是磁盘上的一块区域,可以是分区也可以是文件。当系统物理内存不足时,Linux会将其中的不常用数据保存到swap空间上,这样可以释放更多的物理内存为进程服务。交换空间可以在一定程度上缓解内存不足的情况,但其读写磁盘数据的性能并不高。内核提供了swappiness参数来配置内存数据移到swap的紧迫程度,其取值范围是0到。

linux free命令详解和使用实例

       1.命令格式:

       free [参数]

2.命令功能:

       free 命令显示系统使用和空闲的内存情况,包括物理内存、交互区内存(swap)和内核缓冲区内存。共享内存将被忽略

3.命令参数:

       -b 以Byte为单位显示内存使用情况。

       -k 以KB为单位显示内存使用情况。

       -m 以MB为单位显示内存使用情况。

       -g   以GB为单位显示内存使用情况。

       -o 不显示缓冲区调节列。

       -s间隔秒数 持续观察内存使用状况。

       -t 显示内存总和列。

       -V 显示版本信息。

4.使用实例:

       实例1:显示内存使用情况

       命令:

       复制代码

           

       代码如下:

       free

           free -g

           free -m

       输出:

       复制代码

           

       代码如下:

       [root@SF service]# free

           total used free shared buffers cached

           Mem: 0

           -/+ buffers/cache:

           Swap: /pp

           [root@SF service]# free -g

           total used free shared buffers cached

           Mem: 2 0 4

           -/+ buffers/cache:

           Swap: 1 /pp

           [root@SF service]# free -m

           total used free shared buffers cached

           Mem: 0

           -/+ buffers/cache:

           Swap:

free命令输出内容详细说明:

       下面是密码进入源码对这些数值的解释:

       total:总计物理内存的大小。

       used:已使用多大。

       free:可用有多少。

       Shared:多个进程共享的内存总额。

       Buffers/cached:磁盘缓存的大小。

       第三行(-/+ buffers/cached):

       used:已使用多大。

       free:可用有多少。

       第四行是交换分区SWAP的,也就是我们通常所说的虚拟内存。

       区别:第二行(mem)的used/free与第三行(-/+ buffers/cache) used/free的区别。 这两个的区别在于使用的角度来看,第一行是从OS的角度来看,因为对于OS,buffers/cached 都是属于被使用,所以他的可用内存是KB,已用内存是KB,其中包括,内核(OS)使用+Application(X, oracle,etc)使用的+buffers+cached.

       第三行所指的是从应用程序角度来看,对于应用程序来说,buffers/cached 是等于可用的,因为buffer/cached是为了提高文件读取的性能,当应用程序需在用到内存的时候,buffer/cached会很快地被回收。

       所以从应用程序的角度来说,可用内存=系统free memory+buffers+cached。

       如本机情况的可用内存为:

       =KB+KB+KB

       接下来解释什么时候内存会被交换,以及按什么方交换。

       当可用内存少于额定值的时候,就会开会进行交换.如何看额定值:

       命令:cat /proc/meminfo

       输出:

       复制代码

           

       代码如下:

       [root@SF service]# cat /proc/meminfo

           MemTotal: kB

           MemFree: kB

           Buffers: kB

           Cached: kB

           SwapCached: kB

           Active: kB

           Inactive: kB

           HighTotal: 0 kB

           HighFree: 0 kB

           LowTotal: kB

           LowFree: kB

           SwapTotal: kB

           SwapFree: kB

           Dirty: kB

           Writeback: 0 kB

           AnonPages: kB

           Mapped: kB

           Slab: kB

           PageTables: kB

           NFS_Unstable: 0 kB

           Bounce: 0 kB

           CommitLimit: kB

           Committed_AS: kB

           VmallocTotal: kB

           VmallocUsed: kB

           VmallocChunk: kB

           HugePages_Total: 0HugePages_Free: 0HugePages_Rsvd: 0Hugepagesize: kB

       交换将通过三个途径来减少系统中使用的物理页面的个数:

       1.减少缓冲与页面cache的大小,

       2.将系统V类型的内存页面交换出去,

       3.换出或者丢弃页面。(Application 占用的内存页,也就是物理内存不足)。

       事实上,少量地使用swap是ssh源码网站不是影响到系统性能的。

       那buffers和cached都是缓存,两者有什么区别呢?

       为了提高磁盘存取效率, Linux做了一些精心的设计, 除了对dentry进行缓存(用于VFS,加速文件路径名到inode的转换), 还采取了两种主要Cache方式:Buffer Cache和Page Cache。前者针对磁盘块的读写,后者针对文件inode的读写。这些Cache有效缩短了 I/O系统调用(比如read,write,getdents)的时间。

       磁盘的操作有逻辑级(文件系统)和物理级(磁盘块),这两种Cache就是分别缓存逻辑和物理级数据的。

       Page cache实际上是针对文件系统的,是文件的缓存,在文件层面上的数据会缓存到page cache。文件的逻辑层需要映射到实际的物理磁盘,这种映射关系由文件系统来完成。当page cache的数据需要刷新时,page cache中的数据交给buffer cache,因为Buffer Cache就是缓存磁盘块的。但是这种处理在2.6版本的内核之后就变的很简单了,没有真正意义上的cache操作。

       Buffer cache是针对磁盘块的缓存,也就是在没有文件系统的情况下,直接对磁盘进行操作的数据会缓存到buffer cache中,例如,文件系统的元数据都会缓存到buffer cache中。

       简单说来,page cache用来缓存文件数据,buffer cache用来缓存磁盘数据。在有文件系统的情况下,对文件操作,那么数据会缓存到page cache,如果直接采用dd等工具对磁盘进行读写,那么数据会缓存到buffer cache。

       所以我们看linux,只要不用swap的交换空间,就不用担心自己的内存太少.如果常常swap用很多,可能你就要考虑加物理内存了.这也是linux看内存是否够用的标准.

       如果是应用服务器的话,一般只看第二行,+buffers/cache,即对应用程序来说free的内存太少了,也是该考虑优化程序或加内存了。

       实例2:以总和的形式显示内存的使用信息

       命令:free -t

       输出:

       复制代码

           

       代码如下:

       [root@SF service]# free -t

           total used free shared buffers cached

           Mem: 0

           -/+ buffers/cache: Swap: Total: [root@SF service]#

       说明:

       实例3:周期性的查询内存使用信息

       命令:free -s

       输出:

       复制代码

           

       代码如下:

       [root@SF service]# free -s

           total used free shared buffers cached

           Mem: 0

           -/+ buffers/cache: Swap:

           total used free shared buffers cached

           Mem: 0

           -/+ buffers/cache: Swap:

       说明:

       每s 执行一次命令

linux free命令详解

       free命令用于显示内存状态。free 命令能够显示系统上的空闲和已用内存,还有交换内存,同时,也能显示被内核使用的缓冲和缓存。

       语法:free [-bkmotV][-s <间隔秒数>]

       参考例子:

       显示内存使用情况:

       [root@linux ~]# free

       参数:

       -b 以Byte显示内存使用情况

       -k 以kb为单位显示内存使用情况

       -m 以mb为单位显示内存使用情况

       -g 以gb为单位显示内存使用情况

       -s 持续显示内存

       -t 显示内存使用总合

linux free命令

       Linux系统中的free命令提供了一种直观的方式来查看内存和交换分区的使用情况。它主要关注物理内存(Mem)和硬盘交换分区(Swap)的统计信息。

       首先,free命令显示的Mem部分,total列代表物理内存的总量,used则是已分配给缓存(包括buffers和cache)的内存,尽管有些可能并未实际使用。free列是未分配的内存,这部分内存可供系统即时使用。shared内存通常较少见,这里不做讨论。buffers是系统预留但未被使用的内存,而cached则是系统已分配但未被使用的缓存。

       在第二行的-/+ buffers/cached中,used列显示的是第一行中used减去buffers和cached,即实际被系统占用的内存总量。free列则是未使用的buffers和cache,加上未被分配的内存,构成了系统当前的实际可用内存。

详谈Linux内核《系统调用》(1)———kmalloc/ Kfree实现与分析

       kmalloc和kfree是Linux内核中用于动态内存分配的函数。kmalloc的主要参数包括要分配的内存块大小以及分配标志。size参数确定分配的内存块大小,最小为或字节,最大为K。flags参数则决定了分配的内存是在内核内存、用户内存还是其他类型的内存中,以及在分配时是否需要考虑特定的内存使用限制。其中GFP_KERNEL用于内核内存分配,GFP_USER用于用户内存分配,GFP_ATOMIC在中断上下文中进行无阻塞分配,GFP_HIGHUSER用于高端内存分配,GFP_NOIO和GFP_NOFS用于禁止特定类型的I/O或文件系统调用。

       kmalloc通过__builtin_constant_p函数判断size是否为常数,如果为常数且超过slab缓存最大大小,会调用kmalloc_large进行大内存分配。然后调用kmalloc_order_trace,kmalloc_order,以及alloc_pages进行内存分配。如果size不是常数,会调用__kmalloc,然后经过一系列函数调用最终通过alloc_pages_nodemask进行实质性的内存分配。

       kfree函数用于释放由kmalloc分配的内存。它首先检查释放对象地址是否有效,然后禁用中断,执行额外的释放检查,获取内存所属的缓存,并判断是否为NUMA架构。如果为NUMA架构,会根据释放对象所在的内核节点与当前CPU所属的内存节点是否相同来决定是就地释放还是释放到其他节点。最后,kfree会释放内存片段,更新缓存状态,并释放page到伙伴子系统,同时调整缓存中的可用对象数量。

       通过kmalloc和kfree的交互,Linux内核能够灵活地在内核空间和用户空间中分配和释放内存,满足各种应用需求。这些函数的实现涉及内存管理的多个层面,包括常数检测、页分配、内存节点判断以及缓存管理,展示了内核在资源分配上的高效性和灵活性。

FreeBSD vs Linux:哪个开源操作系统更强大

       本文对比分析了FreeBSD与Linux这两个开源操作系统的优劣。FreeBSD在操作系统完整性上更胜一筹,因为它是一个完整的操作系统,而非只包含内核。Linux则通常被视为一个内核,搭配不同发行版时,会集成必要的软件与库文件,主要来自于GNU项目。价格方面,两者都为免费,但FreeBSD在需要使用源码的公司中可能更受欢迎,因为它不需要公开源码。在安全性上,FreeBSD略高,这得益于其重视安全性的项目理念与预安装的安全功能。Linux高度可配置,安全性同样可靠,但从整体角度来看,FreeBSD更具优势。硬件与架构支持方面,Linux更广泛,可运行于多种平台,而FreeBSD则在特定平台下运行。稳定性上,FreeBSD更胜一筹,因为它是一个更组织化的完整操作系统,对兼容性和额外组件的依赖较少。性能方面,FreeBSD通常更强,因为它更精简,无需对环境进行额外判断。FreeBSD的延迟更低,但大多数应用在Linux上运行速度更快。Linux使用GNU GPL许可证,允许修改源码但必须公开代码,而FreeBSD使用BSD许可证,允许用户自由使用、修改和分发源码,不强制公开。在Shell选择上,大多数人认为Linux的BASH更强大,但TCShell也有其优势,学习路径可能更陡峭。文件系统方面,两者都高效,FreeBSD默认使用ZFS,而大多数Linux发行版使用ext4。制造商支持方面,Linux由IBM、戴尔和惠普等大型企业直接支持,而FreeBSD也有A-Team Systems团队提供支持。更新方面,Linux更新更便捷且及时,FreeBSD则依赖于其开发流程。FreeBSD的包管理工具更简单,有接近,个软件源。Linux的包管理工具则参差不齐,不同发行版可能有所不同。开发者社区方面,Linux有庞大的用户群和活跃的社区,而FreeBSD有忠诚的用户群。在安全性问题上,FreeBSD通常比Linux有更少的安全问题,但差距不大,Linux的用户基数更大,因此可能发现更多漏洞。FreeBSD提供与Linux的二进制兼容性,允许用户在FreeBSD上安装并运行Linux程序。在使用简单度上,FreeBSD相对易于学习,因为它选项更少。Linux则提供更多的自定义选项,对开发者来说可能更混乱。总体而言,FreeBSD通常比Linux更快,这归因于其更全面的系统结构与较低的延迟。最终,选择哪个系统取决于用户的特定需求,FreeBSD适用于追求稳定性和性能的用户,而Linux则提供更大的灵活性和自定义选项。

LINUX就是所谓的“FREE SOFTWRAE”,这个“FREE”的含义是什么? (  6

       有两层含义,一个是免费,就是不花钱你就可以使用。 二是开源,你可以看到源代码,并且在上面优化和学习。

       另外关于FREE更准确的描述主要还是看是什么许可协议,比如 GNU BSD Apache MPL MIT linux系统。 看看《Linux就该这么学》 里面有个专栏是 Linux命令大全(手册