1.mysql源码安装升级
2.MySQL源码下载及安装步骤mysql下载源码
3.MySQL · 源码分析 · Subquery代码分析
4.MySQL 核心模块揭秘 | 12 期 | 创建 savepoint
5.MySQL XA事务源码分析
6.MySQL 优化器源码入门-内核实现 FULL JOIN 功能
mysql源码安装升级
进行MySQL源码小版本升级,台源从5.7.升级至5.7.,源码遵循以下步骤以确保平稳过渡与系统稳定。台源
准备阶段,源码首先获取新版本MySQL的台源源码包。
关闭MySQL服务,源码labview生成源码避免升级过程中影响现有数据库操作。台源
备份原MySQL目录,源码以防升级过程中出现意外,台源便于及时恢复。源码
编译新版本的台源MySQL源码,确保其与当前环境兼容且无误。源码
验证升级成功,台源通过检查MySQL版本信息确认已成功切换至新版本。源码
启动新版本的台源MySQL,确保服务恢复正常运行。
使用自动升级脚本进行简化操作,脚本文件名为mysql_update.sh。
将mysql_update.sh直接放置于MySQL源码包目录内。
执行脚本时,只需指定原MySQL安装目录作为参数,脚本将自动完成升级流程。
以上步骤提供了一种高效且安全的MySQL源码升级方式,确保升级过程流畅无阻,并维护数据库系统正常运行。
MySQL源码下载及安装步骤mysql下载源码
MySQL源码下载及安装步骤
MySQL是一款完全开源的关系型数据库管理系统,广泛应用于各种应用程序中,例如Web应用程序和企业级解决方案。在使用MySQL时,通常除了可以直接安装二进制包版本之外,还可以下载MySQL源码并手动编译安装。废旧回收源码在本文中,我们将介绍MySQL源码下载及安装步骤。
第一步:下载MySQL源码
需要到MySQL官方网站(/downloads/mysql/)下载最新的MySQL源码包。MySQL官方网站提供了多个不同的版本,可以根据需要选择合适的版本。例如,对于Linux系统,可以选择.tar.gz格式的源码包进行下载。
第二步:解压MySQL源码
下载完毕之后,就需要解压MySQL源码包。可以使用以下命令解压:
$ tar zxvf mysql-x.x.x.tar.gz
其中,mysql-x.x.x.tar.gz是下载得到的源码包的名称。解压过程可能需要几分钟的时间,具体时间因系统配置不同而有所不同。
第三步:安装依赖库
在编译安装MySQL的时候,需要依赖很多的库文件。这时,需要首先安装这些依赖库:
$ sudo apt-get install build-essential autoconf automake libtool m4 make gcc g++ libncurses5 libncurses5-dev zlib1g-dev libssl-dev libcurl4-openssl-dev libxml2-dev gettext
第四步:配置源码
在完成依赖库安装之后,接下来需要对MySQL源码进行配置。可以使用以下命令执行源码配置:
$ cd mysql-x.x.x
$ cmake .
$ make
其中,第一条命令进入MySQL源码的目录,第二条命令进行配置,第三条命令则是编译源码。
第五步:安装MySQL
经过第四步编译,就可以执行以下安装命令:
$ sudo make install
这样就完成了MySQL的安装。在安装过程中,会提示输入MySQL的相关配置信息,例如root密码等。安装完成后,可以使用以下命令启动MySQL服务:
$ sudo systemctl start mysql
为了避免每次手动启动服务,源码最多几位还可以设置MySQL为系统服务并设置为开机启动:
$ sudo systemctl enable mysql
总结
在这篇文章中,我们介绍了从MySQL官网下载最新的MySQL源码,然后解压、配置源码并安装MySQL的步骤。要注意的是,在安装MySQL时会提示输入一些配置信息,例如root密码等,需要仔细填写。通过这些步骤,我们可以既熟悉MySQL源码的编译与安装,同时也能更好地对MySQL进行深入了解。
MySQL · 源码分析 · Subquery代码分析
MySQL中的子查询源码分析深入探讨
在了解了MySQL中衍生表的前篇内容后,现在我们将聚焦于条件和投影中嵌套的子查询,这些在MySQL内部是通过Item_subselect来处理的。子查询在SQL中分为相关和非相关两种,MySQL在解析和语义检查后能判断其相关性,并可能在后续优化中调整。
所有子查询都属于Item_subselect类的子类,这个类的继承结构展示了MySQL支持的子查询类型和它们的标记。执行方式则由Subquery_strategy枚举决定,总共分为五种可能的策略,尽管优化过程涉及复杂函数,但重点在于理解整体流程。
MySQL对查询处理分为三个阶段:prepare、optimize和execute。在prepare阶段,从抽象语法树(AST)构建开始,主要针对子查询进行转换,虽涉及规则和复杂函数,但核心思路清晰。FW直播源码在这个阶段,仅留下标记为CANDIDATE_FOR_IN2EXISTS_OR_MAT的子查询,其执行方式在优化阶段决定。
优化阶段则基于代价估算,选择子查询的执行方式,是物化执行还是EXISTS方式。这个阶段的逻辑相当丰富,但这里仅关注子查询部分。
到了execute阶段,执行逻辑相对简单,根据先前的分析,总结了执行子查询的几种方式。总的来说,子查询处理的复杂性高于衍生表,特别是prepare阶段的变换,这为深入源码研究提供了初步框架。
MySQL 核心模块揭秘 | 期 | 创建 savepoint
回滚操作,除了回滚整个事务,还可以部分回滚。部分回滚,需要保存点(savepoint)的协助。本文我们先看看保存点里面都有什么。
作者:操盛春,爱可生技术专家,公众号『一树一溪』作者,专注于研究 MySQL 和 OceanBase 源码。 爱可生开源社区出品,原创内容未经授权不得随意使用,转载请联系小编并注明来源
本文基于 MySQL 8.0. 源码,存储引擎为 InnoDB。淘宝比价源码
InnoDB 的事务对象有一个名为undo_no 的属性。事务每次改变(插入、更新、删除)某个表的一条记录,都会产生一条 undo 日志。这条 undo 日志中会存储它自己的序号。这个序号就来源于事务对象的 undo_no 属性。
也就是说,事务对象的 undo_no 属性中保存着事务改变(插入、更新、删除)某个表中下一条记录产生的 undo 日志的序号。
每个事务都维护着各自独立的 undo 日志序号,和其它事务无关。
每个事务的 undo 日志序号都从 0 开始。事务产生的第 1 条 undo 日志的序号为 0,第 2 条 undo 日志的序号为 1,依此类推。
InnoDB 的 savepoint 结构中会保存创建 savepoint 时事务对象的 undo_no 属性值。
我们通过 SQL 语句创建一个 savepoint 时,server 层、binlog、InnoDB 会各自创建用于保存 savepoint 信息的结构。
server 层的 savepoint 结构是一个SAVEPOINT 类型的对象,主要属性如下:
binlog 的 savepoint 结构很简单,是一个 8 字节的整数。这个整数的值,是创建 savepoint 时事务已经产生的 binlog 日志的字节数,也是接下来新产生的 binlog 日志写入 trx_cache 的 offset。
为了方便介绍,我们把这个整数值称为binlog offset。
InnoDB 的 savepoint 结构是一个trx_named_savept_t 类型的对象,主要属性如下:
创建 savepoint 时,server 层会分配一块 字节的内存,除了存放它自己的 SAVEPOINT 对象,还会存放 binlog offset 和 InnoDB 的 trx_named_savept_t 对象。
server 层的 SAVEPOINT 对象占用这块内存的前 字节,InnoDB 的 trx_named_savept_t 对象占用中间的 字节,binlog offset 占用最后的 8 字节。
客户端连接到 MySQL 之后,MySQL 会分配一个专门用于该连接的用户线程。
用户线程中有一个m_savepoints 链表,用户创建的多个 savepoint 通过 prev 属性形成链表,m_savepoints 就指向最新创建的 savepoint。
server 层创建 savepoint 之前,会按照创建时间从新到老,逐个查看链表中是否存在和本次创建的 savepoint 同名的 savepoint。
如果在用户线程的 m_savepoints 链表中找到了和本次创建的 savepoint 同名的 savepoint,需要先删除 m_savepoints 链表中的同名 savepoint。
找到的同名 savepoint,是 server 层的SAVEPOINT 对象,它后面的内存区域分别保存着 InnoDB 的 trx_named_savept_t 对象、binlog offset。
binlog 是个老实孩子,乖乖的把 binlog offset 写入了 server 层为它分配的内存里。删除同名 savepoint 时,不需要单独处理 binlog offset。
InnoDB 就不老实了,虽然 server 层也为 InnoDB 的 trx_named_savept_t 对象分配了内存,但是 InnoDB 并没有往里面写入内容。
事务执行过程中,用户每次创建一个 savepoint,InnoDB 都会创建一个对应的 trx_named_savept_t 对象,并加入 InnoDB 事务对象的 trx_savepoints 链表的末尾。
因为 InnoDB 自己维护了一个存放 savepoint 结构的链表,server 层删除同名 savepoint 时,InnoDB 需要找到这个链表中对应的 savepoint 结构并删除,流程如下:
InnoDB 从事务对象的 trx_savepoints 链表中删除 trx_named_savept_t 对象之后,server 层接着从用户线程的 m_savepoints 链表中删除 server 层的SAVEPOINT 对象,也就连带着清理了 binlog offset。
处理完查找、删除同名 savepoint 之后,server 层就正式开始创建 savepoint 了,这个过程分为 3 步。
第 1 步,binlog 会生成一个 Query_log_event。
以创建名为test_savept 的 savepoint 为例,这个 event 的内容如下:
binlog event 写入 trx_cache 之后,binlog offset 会写入 server 层为它分配的 8 字节的内存中。
第 2 步,InnoDB 创建 trx_named_savept_t 对象,并放入事务对象的 trx_savepoints 链表的末尾。
trx_named_savept_t 对象的 name 属性值是 InnoDB 的 savepoint 名字。这个名字是根据 server 层为 InnoDB 的 trx_named_savept_t 对象分配的内存的地址计算得到的。
trx_named_savept_t 对象的savept 属性,是一个 trx_savept_t 类型的对象。这个对象里保存着创建 savepoint 时,事务对象中 undo_no 属性的值,也就是下一条 undo 日志的序号。
第 3 步,把 server 层的 SAVEPOINT 对象加入用户线程的 m_savepoints 链表的尾部。
server 层会创建一个SAVEPOINT 对象,用于存放 savepoint 信息。
binlog 会把binlog offset 写入 server 层为它分配的一块 8 字节的内存里。
InnoDB 会维护自己的 savepoint 链表,里面保存着trx_named_savept_t 对象。
如果 m_savepoints 链表中存在和本次创建的 savepoint 同名的 savepoint, 创建新的 savepoint 之前,server 层会从链表中删除这个同名的 savepoint。
server 层创建的 SAVEPOINT 对象会放入m_savepoints 链表的末尾。
InnoDB 创建的 trx_named_savept_t 对象会放入事务对象的trx_savepoints 链表的末尾。
MySQL XA事务源码分析
MySQL XA事务源码分析概览
在深入理解MySQL XA事务处理中,我们重点关注了几个关键步骤:外部XA PREPARE、COMMIT、2PC阶段的Log落盘顺序,以及本地事务commit和外部XA的Rollback、RECOVERY流程。以下是这些流程的简要概述:外部XA PREPARE流程
开始阶段:------------------- XA PREPARE START -------------------------
结束阶段:------------------- XA PREPARE END -------------------------
外部XA COMMIT流程
简述:------------------- XA COMMIT START -------------------------
简述:------------------- XA COMMIT END -------------------------
本地事务COMMIT流程与外部XA比较
不同之处:------------------- PREPARE START -------------------------
不同之处:------------------- PREPARE END -------------------------
------------------- COMMIT START ------------------------- ------------------- COMMIT END -------------------------外部XA ROLLBACK流程
简述:省流版:Not Prepared Rollback和Prepared Rollback的差异
详细版: Not Prepared Rollback:在end - prepare期间rollback
Prepared Rollback:在prepare之后rollback
外部XA RECOVERY流程
简述:本地事务RECOVERY流程
简述: 重要提示:在binlog rotate到新文件前,redo log会强制落盘,确保旧文件不包含未完成的事务。
MySQL 优化器源码入门-内核实现 FULL JOIN 功能
本文以实现MySQL内核的FULL JOIN功能为目标,深入解析了MySQL源码的优化器工作流程。首先,作者通过环境和知识准备,明确将重点放在Server执行流程的探索上,从语法规则的修改开始,如在`sql_yacc.yy`中添加新支持,以及在`parse_tree_nodes.cc`中处理FULL JOIN的语法树解析和打印。接着,作者逐步解析了词法、语法分析后的Query_expression、Query_block和Query_term结构,并在关键函数中设置了断点以跟踪执行流程。
在探索了JOIN的优化工作流程后,作者选择在hypergraph_optimizer中实现FULL JOIN,该部分涉及RelationalExpression、JoinHypergraph的构建和AccessPath的生成。尽管过程复杂,但作者通过逐步调试和修改,成功在HashJoinIterator中添加了对FULL JOIN的支持,包括添加新数据成员和状态标记,以及在LEFT JOIN后执行ANTI JOIN流程。
在测试阶段,作者确认了FULL JOIN功能的正确性,通过在代码关键位置的断点观察,确认了FULL OUTER_JOIN的出现,并展示了改造后的迭代器结构。整个过程中,作者强调了在实现过程中面临的挑战和对MySQL历史的参考,最终决定以最少改动的方式完成任务,以保持代码的简洁和性能。
通过这个项目,作者不仅深入理解了MySQL源码,还实现了FULL JOIN功能,为读者提供了一个从零开始实现新功能的实例。
MySQL全文索引源码剖析之Insert语句执行过程
本文来源于华为云社区,作者为GaussDB数据库,探讨了MySQL全文索引源码中Insert语句的执行过程。
全文索引是一种常用于信息检索的技术,它通过倒排索引实现,即单词和文档的映射关系,如(单词,(文档,偏移))。以创建一个表并在opening_line列上建立全文索引为例,插入'Call me Ishmael.'时,文档会被分为'call', 'me', 'ishmael'等单词,并记录在全文索引中。
全文索引Cache的作用类似于Change Buffer,用于缓存分词结果,避免频繁刷盘。Innodb使用fts_cache_t结构来管理cache,每个全文索引的表都会在内存中创建一个fts_cache_t对象。
Insert语句的执行分为三个阶段:写入行记录阶段、事务提交阶段和刷脏阶段。写入行记录阶段生成doc_id并写入Innodb的行记录,并将doc_id缓存。事务提交阶段对文档进行分词,获取{ 单词,(文档,偏移)}关联对,并插入到cache。刷脏阶段后台线程将cache刷新到磁盘。
全文索引的并发插入可能导致OOM问题,可通过修复patch #解决。当MySQL进程崩溃时,fts_init_index函数会恢复crash前的cache数据。