1.python opencv Դ?源码?
2.OpenCV图像处理|Python OpenCV计算轮廓面积、周长并显示极点
3.CV实战Ubuntu18.04源码编译安装opencv-3.4.X+测试demo
4.python的源码opencv库
5.python opencv对进行直方图和归一化直方图
6.Py之cv2:cv2库(OpenCV,opencv-python)的源码简介、安装、源码使用方法
python opencv Դ?源码?
OpenCV是用于计算机视觉的库,适用于Python、源码电路spice源码分析Ruby和MATLAB。源码在VSLAM技术研究中,源码经常需要在Ubuntu系统上安装不同版本的源码OpenCV。以下为OpenCV3.3.1版本在Ubuntu系统下的源码安装教程,适合初学者。源码
一、源码下载OpenCV源码
欲安装OpenCV3.3.1版本,源码可关注公众号「3D视觉工坊」,源码在后台回复「OpenCV3.3.1_linux」获取安装包下载链接。源码
二、检查已安装的OpenCV版本
在终端输入命令`pkg-config --modversion opencv`查看当前安装的OpenCV版本。
三、安装OpenCV
下载并解压OpenCV3.3.1的源码安装包后,执行如下命令进行安装,安装路径为`/home/yongqi/workspace/2_ProgramFiles/OpenCV3.3.1`。
四、配置OpenCV环境
配置OpenCV的lib路径,以完成环境设置。
五、测试OpenCV版本
完成配置后,系统显示的OpenCV版本应为3.3.1。
六、学习OpenCV
提供一份包含G资料的《人工智能自学视频》资料包,内容包括人工智能基础入门、AI框架实战、1688商城模板源码图像识别、OpenCV、机器学习等,以及国内外知名资源、AI论文等。
资料在网盘中整理整齐,欢迎下载!分享给有需要的伙伴。如果需要使用OpenCV2.4.9版本,只需调整第四步的pkgconfig路径即可。
OpenCV图像处理|Python OpenCV计算轮廓面积、周长并显示极点
Python OpenCV计算轮廓面积、周长并显示极点
通过Python的OpenCV库,可以方便地计算图像中轮廓的面积和周长,并且能够清晰地显示轮廓的极点。以下为实现此功能的完整代码。
首先,通过函数解析来理解代码中关键步骤的含义:
1、cv2.contourArea()函数用来计算轮廓的面积。
2、cv2.arcLength函数用于计算轮廓的周长。
3、left = tuple(ct[ct[:, :, 0].argmin()][0]) # 图像轮廓的最左端像素点的坐标
4、top = tuple(ct[ct[:, :, 1].argmin()][0]) # 图像轮廓的最顶端像素点的坐标
5、cv2.circle(img, bottom, 5, (0, 0, ), -1)
6、cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, , 0), 1
结合以上解析,代码逻辑清晰:利用OpenCV库中的函数,首先计算轮廓的面积与周长,然后分别找到轮廓的最左端、最顶端坐标。爱卡汽车源码接着,使用cv2.circle函数绘制轮廓的极点,并通过cv2.putText添加文字说明。最终,展示处理后的图像,直观呈现轮廓的面积、周长与极点信息。
CV实战Ubuntu.源码编译安装opencv-3.4.X+测试demo
在Linux环境下,特别是Ubuntu .中安装OpenCV-3.4.x版本,需要理解其源码编译过程,本文将详细说明从源码编译到安装,以及测试demo的全过程。安装步骤分为源码下载、使用`apt-get`安装依赖项、从源码构建安装OpenCV、配置环境、验证安装情况以及卸载。在Linux环境下,确保系统稳定运行是关键步骤之一。以下为详细流程: 1. 源码下载 从OpenCV官网或GitHub下载OpenCV源码。选择版本时,考虑与项目的兼容性以及对最新特性的需求。 2. apt-get安装 Ubuntu下,OpenCV安装可通过两种方式:直接使用`$ sudo apt-get install python-opencv`进行快速安装,适用于仅在Python环境中使用OpenCV的情况;推荐从源码构建安装,以获取更新的代码版本,增强稳定性和可控性。 3. 从源码安装 从源码构建安装时,可选择默认安装位置或自定义安装位置。默认位置通常为`/usr/local`,xsstrike源码怎么运行而自定义位置需要额外配置。 3.1 构建依赖项 确保安装`cmake`, `gcc`, `g++`等构建工具。对于Python支持,选择安装Python 2和/或Python 3的特定模块。安装`GTK`支持用于图形界面应用,以及处理库(根据需要)。使用`cmake`下载`ippcv`库,注意**问题。 3.2 默认位置安装 使用`git`或下载的压缩包解压后,切换到源码目录,执行`cmake`命令以构建`CMakeLists.txt`,并创建`makefile`。指定构建参数时,`CMAKE_INSTALL_PREFIX`用于设置安装路径,通常为`/usr/local`。根据需要选择构建类型(`DEBUG`或`RELEASE`)和是否启用CUDA加速。 3.3 自定义位置安装 自定义安装时,使用`cmake`命令时需添加`-DCMAKE_INSTALL_PREFIX`参数,指向自定义安装目录。在安装后,还需配置扫描路径和设置环境变量,确保其他项目能够正确引用OpenCV库。 配置 配置步骤包括将OpenCV的`lib`路径添加到系统配置中,以便其他项目能够引用OpenCV库。通常,这涉及编辑`ld.so.conf`文件或通过环境变量设置。 验证查看版本 在终端或Python环境中,通过`pkg-config`命令或Python导入`cv2`模块查看OpenCV版本。 C++和Python demo测试 执行官方提供的示例代码,验证OpenCV功能。物流公司php源码在C++环境中,通过指定`OpenCV_DIR`变量路径来正确引用库文件。在Python环境中,确保导入路径设置正确。 卸载 卸载OpenCV时,使用`make uninstall`命令。注意,仅删除了文件,留下的空文件夹可能需要手动删除。 通过遵循上述步骤,即可在Ubuntu .系统中成功安装OpenCV,并进行测试验证。确保安装过程的每个环节都得到正确配置,以避免潜在的问题和冲突。python的opencv库
OpenCV是一个广泛使用的开源计算机视觉库,支持多种编程语言,包括Python、C++、Java等。本文将详细介绍Python中OpenCV库的使用。
首先,导入库是使用OpenCV的关键步骤。在Python程序中导入OpenCV库,可以使用以下代码:
python
import cv2
OpenCV提供了多种基本功能,包括图像读取、显示、处理和保存。下面将逐一介绍这些功能。
使用OpenCV读取图像的代码如下:
python
img = cv2.imread('path_to_image.jpg')
显示图像的方法是:
python
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
进行图像处理时,可以使用OpenCV提供的各种函数,例如滤波、边缘检测和形态学处理。以下是一个简单的滤波处理示例:
python
blur = cv2.GaussianBlur(img, (5, 5), 0)
最后,使用OpenCV保存图像可以使用以下代码:
python
cv2.imwrite('path_to_output_image.jpg', img)
以下是一个简单的OpenCV示例程序,包括读取一张并显示:
python
import cv2
img = cv2.imread('path_to_image.jpg')
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
通过以上介绍和示例,可以了解到Python中OpenCV库的使用方法。使用OpenCV库,可以进行图像处理、计算机视觉等开发和应用。
python opencv对进行直方图和归一化直方图
直方图在图像处理中是一个重要的工具,它展示了图像中像素值的分布情况。使用Python OpenCV库中的cv2.calcHist()函数,可以计算出图像的直方图。
归一化直方图则通过将原始直方图中每个像素值出现的次数除以图像总像素数,得到的直方图。这种方法有助于比较和分析不同分辨率或大小的图像。
下面是一个示例代码,演示如何在Python OpenCV中计算和绘制直方图与归一化直方图。
python import cv2 import numpy as np from matplotlib import pyplot as plt
首先,使用cv2.imread()函数读取一张名为'lena.jpg'的灰度图像。接着,利用np.histogram()函数计算图像的直方图。该函数会返回直方图数组与直方图bin数组。
我们利用matlplotlib库的plt.hist()函数将直方图进行可视化。同时,我们计算归一化直方图,通过将原始直方图中每个像素值出现的次数除以图像总像素数得到。最后,使用plt.plot()函数绘制归一化直方图。
在执行上述代码时,确保已经安装了OpenCV和matplotlib库。若需学习相关知识,可点击链接免费报名,获取免费音视频学习资源。
注:资料包含FFmpeg/WebRTC/RTMP/NDK/Android音视频流媒体高级开发等内容,免费学习地址:FFmpeg/WebRTC/RTMP/NDK/Android音视频流媒体高级开发。同时,可获取免费分享的音视频学习资料包、大厂面试题、技术视频和学习路线图。需要资料的读者可点击加群免费领取。
Py之cv2:cv2库(OpenCV,opencv-python)的简介、安装、使用方法
Py之cv2库详解:OpenCV介绍、安装与常用方法 OpenCV,全称Open Source Computer Vision Library,是一个开源的计算机视觉库,支持跨平台,包括Linux、Windows、Android和Mac OS。它主要由C++编写,但也提供了Python、Ruby、MATLAB等多种语言接口,为图像处理和计算机视觉应用提供了丰富的通用算法。 在计算机视觉领域,OpenCV因其丰富的功能和易用性而被广泛应用,如图像处理、物体识别、人脸识别等。此外,它也支持底层计算机操作,便于开发者深入探究视觉技术的底层实现。 安装OpenCV有多种途径,其中两种常见方法包括:通过下载whl文件,如opencv_python-3.4.1-cp-cpm-win_amd.whl,然后在命令行使用pip进行安装:`pip install opencv_python-3.4.1-cp-cpm-win_amd.whl`
直接通过pip安装:`pip install opencv-python`,检查安装成功后,即可开始使用。
在Anaconda环境下安装:同样使用pip,但在命令行中开启Anaconda Prompt后进行安装。
OpenCV库中包含众多实用函数和方法,例如:基本库函数,如`cv2.imread()`用于读取图像,`cv2.imshow()`用于显示图像,`cv2.imwrite()`用于保存图像。
图像基本运算,包括加、减、乘、除等数学运算,以及图像缩放、旋转、颜色空间转换等操作。
`cv2.bitwise_and()`和`cv2.bitwise_not()`等按位操作函数,用于像素级别的操作。
图像处理函数,如`cv2.rectangle()`用于绘制矩形,`cv2.boundingRect()`则用于获取图像的边界框。
了解了OpenCV的基本概念、安装方法和常用函数后,开发者可以更高效地在计算机视觉项目中实现图像处理和分析。分钟!用Python实现简单的人脸识别技术(附源码)
Python实现简单的人脸识别技术,主要依赖于Python语言的胶水特性,通过调用特定的库包即可实现。这里介绍的是一种较为准确的实现方法。实现步骤包括准备分类器、引入相关包、创建模型、以及最后的人脸识别过程。首先,需确保正确区分人脸的分类器可用,可以使用预训练的模型以提高准确度。所用的包主要包括:CV2(OpenCV)用于图像识别与摄像头调用,os用于文件操作,numpy进行数学运算,PIL用于图像处理。
为了实现人脸识别,需要执行代码以加载并使用分类器。执行“face_detector = cv2.CascadeClassifier(r'C:\Users\admin\Desktop\python\data\haarcascade_frontalface_default.xml')”时,确保目录名中无中文字符,以免引发错误。这样,程序就可以识别出目标对象。
然后,选择合适的算法建立模型。本次使用的是OpenCV内置的FaceRecognizer类,包含三种人脸识别算法:eigenface、fisherface和LBPHFaceRecognizer。LBPH是一种纹理特征提取方式,可以反映出图像局部的纹理信息。
创建一个Python文件(如trainner.py),用于编写数据集生成脚本,并在同目录下创建一个文件夹(如trainner)存放训练后的识别器。这一步让计算机识别出独特的人脸。
接下来是识别阶段。通过检测、校验和输出实现识别过程,将此整合到一个统一的文件中。现在,程序可以识别并确认目标对象。
通过其他组合,如集成检测与开机检测等功能,可以进一步扩展应用范围。实现这一过程后,你将掌握Python简单人脸识别技术。
若遇到问题,首先确保使用Python 2.7版本,并通过pip安装numpy和对应版本的opencv。针对特定错误(如“module 'object' has no attribute 'face'”),使用pip install opencv-contrib-python解决。如有疑问或遇到其他问题,请随时联系博主获取帮助。