1.死磕以太坊源码分析之Kademlia算法
2.到底什么是棵树棵树哈夫曼树啊,求例子
3.AST详解与运用
4.有人可以帮我注释一段关于用c语言实现哈夫曼树的源码代码吗?
死磕以太坊源码分析之Kademlia算法
Kademlia算法是一种点对点分布式哈希表(DHT),它在复杂环境中保持一致性和高效性。棵树棵树该算法基于异或指标构建拓扑结构,源码简化了路由过程并确保了信息的棵树棵树有效传递。通过并发的源码61的源码异步查询,系统能适应节点故障,棵树棵树而不会导致用户等待过长。源码
在Kad网络中,棵树棵树每个节点被视作一棵二叉树的源码叶子,其位置由ID值的棵树棵树最短前缀唯一确定。节点能够通过将整棵树分割为连续、源码不包含自身的棵树棵树子树来找到其他节点。例如,源码节点可以将树分解为以0、棵树棵树、、为前缀的子树。节点通过连续查询和学习,逐步接近目标节点,最终实现定位。每个节点都需知道其各子树至少一个节点,这有助于通过ID值找到任意节点。
判断节点间距离基于异或操作。例如,节点与节点的距离为,高位差异对结果影响更大。连续十几个涨停板源码公式异或操作的单向性确保了查询路径的稳定性,不同起始节点进行查询后会逐步收敛至同一路径,减轻热门节点的存储压力,加快查询速度。
Kad路由表通过K桶构建,每个节点保存距离特定范围内的节点信息。K桶根据ID值的前缀划分距离范围,每个桶内信息按最近至最远的顺序排列。K桶大小有限,确保网络负载平衡。当节点收到PRC消息时,会更新相应的K桶,保持网络稳定性和减少维护成本。K桶老化机制通过随机选择节点执行RPC_PING操作,避免网络流量瓶颈。
Kademlia协议包括PING、STORE、FIND_NODE、FIND_VALUE四种远程操作。这些操作通过K桶获得节点信息,并根据信息数量返回K个节点。系统存储数据以键值对形式,BitTorrent中key值为info_hash,value值与文件紧密相关。RPC操作中,接收者响应随机ID值以防止地址伪造,h5盲盒平台源码从哪里来并在回复中包含PING操作校验发送者状态。
Kad提供快速节点查找机制,通过参数调节查找速度。节点x查找ID值为t的节点,递归查询最近的节点,直至t或查询失败。递归过程保证了收敛速度为O(logN),N为网络节点总数。查找键值对时,选择最近节点执行FIND_VALUE操作,缓存数据以提高下次查询速度。
数据存储过程涉及节点间数据复制和更新,确保一致性。加入Kad网络的节点通过与现有节点联系,并执行FIND_NODE操作更新路由表。节点离开时,系统自动更新数据,无需发布信息。Kad协议设计用于适应节点失效,周期性更新数据到最近邻居,确保数据及时刷新。
到底什么是哈夫曼树啊,求例子
哈夫曼树是给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的郑州溯源码燕窝一盏多少钱二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。例子:
1、将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点);
2、 在森林中选出两个根结点的权值最小的树合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;
3、从森林中删除选取的两棵树,并将新树加入森林;
4、重复(2)、(3)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树。
扩展资料:
按照哈夫曼编码构思程序流程:
1、切割的顺序是从上往下,直至数组中的元素全部出现在叶节点;
2、我们思路正好相反,从数组中找出最小的两个元素作为最下面的叶节点,在向备选数组中存入这两个叶节点的和(这个新的和加入累加运算,这个和也就是四方对接三方支付平台源码所求的最小值的一部分,原因如上图)。
3、以本题为例,备选数组中现有元素为{ ,},再次取出两个最小元素进行求和,得到新的元素,回归备选数组并记入累加。
4、上述2.3布重复执行直至备选数组中只有一个元素,此时累加结束,返回累加值即可
5、求数组中的最小值,可以用小根堆进行提取最为方便;此题用到了贪心的思路,即用相同的策略重复执行,直至我们得到所需的结果。
参考资料来源:百度百科——哈夫曼树
AST详解与运用
了解AST之前,我们先来简单陈述一下JavaScript引擎的工作原理:从上图中我们可以看到,JavaScript引擎做的第一件事情就是把JavaScript代码编译成抽象语法树,于是就有了本文对AST抽象语法树的浅析. 我们都知道,在传统的编译语言的流程中,程序的一段源代码在执行之前会经历三个步骤,统称为"编译":抽象语法树(abstract syntax code,AST)是源代码的抽象语法结构的树状表示,树上的每个节点都表示源代码中的一种结构,之所以说是抽象的,是因为抽象表示把js代码进行了结构化的转化,转化为一种数据结构。这种数据结构其实就是一个大的json对象,json我们都熟悉,他就像一颗枝繁叶茂的树。有树根,有树干,有树枝,有树叶,无论多小多大,都是一棵完整的树。 简单理解,就是把我们写的代码按照一定的规则转换成一种树形结构。 AST的作用不仅仅是用来在JavaScript引擎的编译上,我们在实际的开发过程中也是经常使用的,比如我们常用的babel插件将 ES6转化成ES5、使用 UglifyJS来压缩代码 、css预处理器、开发WebPack插件、Vue-cli前端自动化工具等等,这些底层原理都是基于AST来实现的,AST能力十分强大, 能够帮助开发者理解JavaScript这门语言的精髓。 我们先来看一组简单的AST树状结构: 经过转化,输出如下AST树状结构: 我们可以看到,一个标准的AST结构可以理解为一个json对象,那我们就可以通过一些方法去解析和操作它,这里我们先提供一个在线检测工具,大家可以自行去体验: esprima.org/demo/parse... AST编译流程图: 我们可以看到,AST工具会源代码经过四个阶段的转换: 词法分析scanner parser生成AST树 traverse对AST树遍历,进行增删改查 generator将更新后的AST转化成代码 Babel插件就是作用于抽象语法树。 Babel 的三个主要处理步骤分别是: 解析(parse),转换(transform),生成(generate)。 vue中AST主要运用在模板编译过程. vue中的模板编译主要分为三个步骤: 解析器要实现的功能就是将模板解析成AST,我们这里主要来分析一下代码解析阶段,这里主要运用的是parse()这个函数,事实上,解析器内部也分为好几个解析器,比如HTML解析器、文本解析器以及过滤解析器,其中最主要的就是HTML解析器。HTML解析器的作用就是解析HTML,它在解析HTML的过程中会不断触发各种钩子函数,我们来看看代码实现: 举个例子: 当上面这个模板被HTML解析器解析时,所触发的钩子函数依次是:start、chars、end。 所以HTML解析器在实现上是一个函数,它有两个参数----模板和选项,我们的模板是一小段一小段去截取与解析的,所以需要不断循环截取,我们来看看vue内部实现原理: 以上就是vue解析器生成AST语法树的主流程了,代码细节的地方还需要自己去解读源码,源码位置:\vue\packages\weex-template-compiler\build.js AST抽象语法树的知识点作为JavaScript中(任何编程语言中都有ast这个概念,这里就不过多赘述)相对基础的,也是最不可忽略的知识,带给我们的启发是无限可能的,它就像一把螺丝刀,能够拆解javascript这台庞大的机器,让我们能够看到一些本质的东西,同时也能通过它批量构建任何javascript代码。 小时候梦想改变世界,如今我们可以用自己写的程序,构建出我们所生活的网络世界,丰富多姿。 借用一句歌词: 我还是从前那个少年,没有一丝丝改变。时间只不过是考验,种在心中信念丝毫未减 。希望大家能够在软件开发的路途上坚定信念,越走越远.....有人可以帮我注释一段关于用c语言实现哈夫曼树的代码吗?
在一般的数据结构的书中,树的那章后面,著者一般都会介绍一下哈夫曼(HUFFMAN)树和哈夫曼编码。哈夫曼编码是哈夫曼树的一个应用。哈夫曼编码应用广泛,如JPEG中就应用了哈夫曼编码。 首先介绍什么是哈夫曼树。哈夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树。所谓树的带权路径长度,就是树中所有的叶结点
的权值乘上其到根结点的 路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数)。
树的带权路径长度记为WPL=(W1*L1+W2*L2+W3*L3+...+Wn*Ln) ,N个权值Wi(i=1,2,...n)构成一棵有N个叶结点的二叉树,相应的叶结点的路径长度为Li(i=1,2,...n)。 可以证明哈夫曼树的WPL是最小的。
哈夫曼编码步骤:
一、对给定的n个权值{ W1,W2,W3,...,Wi,...,Wn}构成n棵二叉树的初始集合F= { T1,T2,T3,...,Ti,...,Tn},其中每棵二叉树Ti中只有一个权值为Wi的根结点,它的左右子树均为空。(为方便在计算机上实现算 法,一般还要求以Ti的权值Wi的升序排列。)
二、在F中选取两棵根结点权值最小的树作为新构造的二叉树的左右子树,新二叉树的根结点的权值为其左右子树的根结点的权值之和。
三、从F中删除这两棵树,并把这棵新的二叉树同样以升序排列加入到集合F中。
四、重复二和三两步,直到集合F中只有一棵二叉树为止。
简易的理解就是,假如我有A,B,C,D,E五个字符,出现的频率(即权值)分别为5,4,3,2,1,那么我们第一步先取两个最小权值作为左右子树构造一个新树,即取1,2构成新树,其结点为1+2=3,如图:
请点击输入描述
虚线为新生成的结点,第二步再把新生成的权值为3的结点放到剩下的集合中,所以集合变成{ 5,4,3,3},再根据第二步,取最小的两个权值构成新树,如图:
请点击输入描述
再依次建立哈夫曼树,如下图:
请点击输入描述
其中各个权值替换对应的字符即为下图:
请点击输入描述
所以各字符对应的编码为:A->,B->,C->,D->,E->
霍夫曼编码是一种无前缀编码。解码时不会混淆。其主要应用在数据压缩,加密解密等场合。
C语言代码实现:
/*-------------------------------------------------------------------------
* Name: 哈夫曼编码源代码。
* Date: ..
* Author: Jeffrey Hill+Jezze(解码部分)
* 在 Win-TC 下测试通过
* 实现过程:着先通过 HuffmanTree() 函数构造哈夫曼树,然后在主函数 main()中
* 自底向上开始(也就是从数组序号为零的结点开始)向上层层判断,若在
* 父结点左侧,则置码为 0,若在右侧,则置码为 1。最后输出生成的编码。
*------------------------------------------------------------------------*/
#include <stdio.h>
#include<stdlib.h>
#define MAXBIT
#define MAXVALUE
#define MAXLEAF
#define MAXNODE MAXLEAF*2 -1
typedef struct
{
int bit[MAXBIT];
int start;
} HCodeType; /* 编码结构体 */
typedef struct
{
int weight;
int parent;
int lchild;
int rchild;
int value;
} HNodeType; /* 结点结构体 */
/* 构造一颗哈夫曼树 */
void HuffmanTree (HNodeType HuffNode[MAXNODE], int n)
{
/* i、j: 循环变量,m1、m2:构造哈夫曼树不同过程中两个最小权值结点的权值,
x1、x2:构造哈夫曼树不同过程中两个最小权值结点在数组中的序号。*/
int i, j, m1, m2, x1, x2;
/* 初始化存放哈夫曼树数组 HuffNode[] 中的结点 */
for (i=0; i<2*n-1; i++)
{
HuffNode[i].weight = 0;//权值
HuffNode[i].parent =-1;
HuffNode[i].lchild =-1;
HuffNode[i].rchild =-1;
HuffNode[i].value=i; //实际值,可根据情况替换为字母
} /* end for */
/* 输入 n 个叶子结点的权值 */
for (i=0; i<n; i++)
{
printf ("Please input weight of leaf node %d: \n", i);
scanf ("%d", &HuffNode[i].weight);
} /* end for */
/* 循环构造 Huffman 树 */
for (i=0; i<n-1; i++)
{
m1=m2=MAXVALUE; /* m1、m2中存放两个无父结点且结点权值最小的两个结点 */
x1=x2=0;
/* 找出所有结点中权值最小、无父结点的两个结点,并合并之为一颗二叉树 */
for (j=0; j<n+i; j++)
{
if (HuffNode[j].weight < m1 && HuffNode[j].parent==-1)
{
m2=m1;
x2=x1;
m1=HuffNode[j].weight;
x1=j;
}
else if (HuffNode[j].weight < m2 && HuffNode[j].parent==-1)
{
m2=HuffNode[j].weight;
x2=j;
}
} /* end for */
/* 设置找到的两个子结点 x1、x2 的父结点信息 */
HuffNode[x1].parent = n+i;
HuffNode[x2].parent = n+i;
HuffNode[n+i].weight = HuffNode[x1].weight + HuffNode[x2].weight;
HuffNode[n+i].lchild = x1;
HuffNode[n+i].rchild = x2;
printf ("x1.weight and x2.weight in round %d: %d, %d\n", i+1, HuffNode[x1].weight, HuffNode[x2].weight); /* 用于测试 */
printf ("\n");
} /* end for */
/* for(i=0;i<n+2;i++)
{
printf(" Parents:%d,lchild:%d,rchild:%d,value:%d,weight:%d\n",HuffNode[i].parent,HuffNode[i].lchild,HuffNode[i].rchild,HuffNode[i].value,HuffNode[i].weight);
}*///测试
} /* end HuffmanTree */
//解码
void decodeing(char string[],HNodeType Buf[],int Num)
{
int i,tmp=0,code[];
int m=2*Num-1;
char *nump;
char num[];
for(i=0;i<strlen(string);i++)
{
if(string[i]=='0')
num[i]=0;
else
num[i]=1;
}
i=0;
nump=&num[0];
while(nump<(&num[strlen(string)]))
{ tmp=m-1;
while((Buf[tmp].lchild!=-1)&&(Buf[tmp].rchild!=-1))
{
if(*nump==0)
{
tmp=Buf[tmp].lchild ;
}
else tmp=Buf[tmp].rchild;
nump++;
}
printf("%d",Buf[tmp].value);
}
}
int main(void)
{
HNodeType HuffNode[MAXNODE]; /* 定义一个结点结构体数组 */
HCodeType HuffCode[MAXLEAF], cd; /* 定义一个编码结构体数组, 同时定义一个临时变量来存放求解编码时的信息 */
int i, j, c, p, n;
char pp[];
printf ("Please input n:\n");
scanf ("%d", &n);
HuffmanTree (HuffNode, n);
for (i=0; i < n; i++)
{
cd.start = n-1;
c = i;
p = HuffNode[c].parent;
while (p != -1) /* 父结点存在 */
{
if (HuffNode[p].lchild == c)
cd.bit[cd.start] = 0;
else
cd.bit[cd.start] = 1;
cd.start--; /* 求编码的低一位 */
c=p;
p=HuffNode[c].parent; /* 设置下一循环条件 */
} /* end while */
/* 保存求出的每个叶结点的哈夫曼编码和编码的起始位 */
for (j=cd.start+1; j<n; j++)
{ HuffCode[i].bit[j] = cd.bit[j];}
HuffCode[i].start = cd.start;
} /* end for */
/* 输出已保存好的所有存在编码的哈夫曼编码 */
for (i=0; i<n; i++)
{
printf ("%d 's Huffman code is: ", i);
for (j=HuffCode[i].start+1; j < n; j++)
{
printf ("%d", HuffCode[i].bit[j]);
}
printf(" start:%d",HuffCode[i].start);
printf ("\n");
}
/* for(i=0;i<n;i++){
for(j=0;j<n;j++)
{
printf ("%d", HuffCode[i].bit[j]);
}
printf("\n");
}*/
printf("Decoding?Please Enter code:\n");
scanf("%s",&pp);
decodeing(pp,HuffNode,n);
getch();
return 0;
}