【eclipse 添加源码指向】【雷霆h5换皮二开源码购买】【百家乐网建搭建源码】内存源码分析_内存源码分析方法

时间:2025-01-01 14:07:46 来源:ucos街机游戏源码 分类:娱乐

1.【Busybox】Busybox源码分析-01 | 源码目录结构和程序入口
2.RocksDb 源码剖析 (1) | 如何混合 new 、内存内存mmap 设计高效内存分配器 arena ?源码源码
3.Linux内核源码解析---万字解析从设计模式推演per-cpu实现原理
4.8086模拟器8086tiny源码分析(8)执行mov指令(五)段寄存器拾遗
5.mcelog代码解析
6.Andorid进阶一:LeakCanary源码分析,从头到尾搞个明白

内存源码分析_内存源码分析方法

【Busybox】Busybox源码分析-01 | 源码目录结构和程序入口

       Busybox是分析分析方法一个开源项目,遵循GPL v2协议。内存内存其本质是源码源码将多个UNIX命令集合成一个小型可执行程序,适用于构建轻量级根文件系统,分析分析方法eclipse 添加源码指向特别是内存内存嵌入式系统设计中。版本1..0的源码源码Busybox体积小巧,仅为几百千字节至1M左右,分析分析方法动态链接方式下大小更小。内存内存其设计模块化,源码源码可灵活添加、分析分析方法去除命令或调整选项。内存内存

       Busybox程序主体在Linux内核启动后加载运行,源码源码入口为main()函数,分析分析方法位于libbb/appletlib文件末尾。通过条件分支处理,决定以库方式构建。在函数体中,使用mallopt()调整内存分配参数以优化资源使用。接着通过条件宏定义,控制代码编译逻辑,如在Linux内核启动后期加载并运行Busybox构建的init程序。命令行输入时,Busybox会解析参数,执行对应操作。

       在源码中,通过char * applet_name表示工具名称,调用lbb_prepare()函数设置其值为“busybox”。之后解析命令行参数,如在mkdir iriczhao命令中,解析到mkdir命令传递给applet_name。配置了FEATURE_SUID_CONFIG宏定义时,会从/etc/busybox.conf文件中解析配置参数。最后,执行run_applet_and_exit()函数,根据NUM_APPLETS值决定执行命令或报错。

       在命令行下键入命令后,执行关键操作的函数是find_applet_by_name()和run_applet_no_and_exit()。编译构建并安装Busybox后,可执行程序和命令链接分布在安装目录下。从源码角度,命令有一一对应的执行函数,通过命令表管理命令入口函数。在代码执行逻辑中,首先调用find_applet_by_name()获取命令表数组下标,再传递给run_applet_no_and_exit()执行对应命令。

RocksDb 源码剖析 (1) | 如何混合 new 、mmap 设计高效内存分配器 arena ?

       本文旨在深入剖析RocksDb源码,从内存分配器角度着手。RocksDb内包含MemoryAllocator和Allocator两大类内存分配器。MemoryAllocator作为基类,提供MemkindKmemAllocator和JemallocNodumpAllocator两个子类,雷霆h5换皮二开源码购买分别集成memkind和jemalloc库的功能,实现内存分配与释放。

       接着,重点解析Allocator类及其子类Arena的实现。基类Allocator提供两个关键接口:内存分配与对齐。Arena类采用block为单位进行内存分配,先分配一个block大小的内存,后续满足需求时,优先从block中划取,以减少内存浪费。一个block的大小由kBlockSize参数决定。分配策略中,Arena通过两个指针(aligned_alloc_ptr_和unaligned_alloc_ptr_)分别管理对齐与非对齐内存,提高内存利用效率。

       分配内存时,Arena通过构造函数初始化成员变量,包括block大小、内存在栈上的分配与mmap机制的使用。构造函数内使用OptimizeBlockSize函数确保block大小合理,减少内存对齐浪费。Arena中的内存管理逻辑清晰,尤其在分配新block时,仅使用new操作,无需额外内存对齐处理。

       分配内存流程中,AllocateNewBlock函数直接调用new分配内存,而AllocateFromHugePage和AllocateFallback函数则涉及mmap机制的使用与内存分配策略的统一。这些函数共同构成了Arena内存管理的核心逻辑,实现了灵活高效地内存分配。

       此外,Arena还提供AllocateAligned函数,针对特定对齐需求分配内存。这一函数在使用mmap分配内存时,允许用户自定义对齐大小,优化内存使用效率。在处理对齐逻辑时,Arena巧妙地利用位运算优化计算过程,提高了代码效率。

       总结而言,RocksDb的内存管理机制通过Arena类实现了高效、灵活的内存分配与管理。通过深入解析其源码,可以深入了解内存对齐、内存分配与多线程安全性的实现细节,为开发者提供宝贵的内存管理实践指导。未来,将深入探讨多线程内存分配器的设计,敬请期待后续更新。

Linux内核源码解析---万字解析从设计模式推演per-cpu实现原理

       引子

       在如今的大型服务器中,NUMA架构扮演着关键角色。它允许系统拥有多个物理CPU,不同NUMA节点之间通过QPI通信。百家乐网建搭建源码虽然硬件连接细节在此不作深入讨论,但需明白每个CPU优先访问本节点内存,当本地内存不足时,可向其他节点申请。从传统的SMP架构转向NUMA架构,主要是为了解决随着CPU数量增多而带来的总线压力问题。

       分配物理内存时,numa_node_id() 方法用于查询当前CPU所在的NUMA节点。频繁的内存申请操作促使Linux内核采用per-cpu实现,将CPU访问的变量复制到每个CPU中,以减少缓存行竞争和False Sharing,类似于Java中的Thread Local。

       分配物理页

       尽管我们不必关注底层实现,buddy system负责分配物理页,关键在于使用了numa_node_id方法。接下来,我们将深入探索整个Linux内核的per-cpu体系。

       numa_node_id源码分析获取数据

       在topology.h中,我们发现使用了raw_cpu_read函数,传入了numa_node参数。接下来,我们来了解numa_node的定义。

       在topology.h中定义了numa_node。我们继续跟踪DECLARE_PER_CPU_SECTION的定义,最终揭示numa_node是一个共享全局变量,类型为int,存储在.data..percpu段中。

       在percpu-defs.h中,numa_node被放置在ELF文件的.data..percpu段中,这些段在运行阶段即为段。接下来,我们返回raw_cpu_read方法。

       在percpu-defs.h中,我们继续跟进__pcpu_size_call_return方法,此方法根据per-cpu变量的大小生成回调函数。对于numa_node的int类型,最终拼接得到的是raw_cpu_read_4方法。

       在percpu.h中,调用了一般的read方法。在percpu.h中,获取numa_node的绝对地址,并通过raw_cpu_ptr方法。

       在percpu-defs.h中,我们略过验证指针的环节,追踪arch_raw_cpu_ptr方法。接下来,我们来看x架构的实现。

       在percpu.h中,使用汇编获取this_cpu_off的地址,代表此CPU内存副本到".data..percpu"的偏移量。加上numa_node相对于原始内存副本的偏移量,最终通过解引用获得真正内存地址内的下影单针探底副图指标源码值。

       对于其他架构,实现方式相似,通过获取自己CPU的偏移量,最终通过相对偏移得到pcp变量的地址。

       放入数据

       讨论Linux内核启动过程时,我们不得不关注per-cpu的值是如何被放入的。

       在main.c中,我们以x实现为例进行分析。通过setup_percpu.c文件中的代码,我们将node值赋给每个CPU的numa_node地址处。具体计算方法通过early_cpu_to_node实现,此处不作展开。

       在percpu-defs.h中,我们来看看如何获取每个CPU的numa_node地址,最终还是通过简单的偏移获取。需要注意如何获取每个CPU的副本偏移地址。

       在percpu.h中,我们发现一个关键数组__per_cpu_offset,其中保存了每个CPU副本的偏移值,通过CPU的索引来查找。

       接下来,我们来设计PER CPU模块。

       设计一个全面的PER CPU架构,它支持UMA或NUMA架构。我们设计了一个包含NUMA节点的结构体,内部管理所有CPU。为每个CPU创建副本,其中存储所有per-cpu变量。静态数据在编译时放入原始数据段,动态数据在运行时生成。

       最后,我们回到setup_per_cpu_areas方法的分析。在setup_percpu.c中,我们详细探讨了关键方法pcpu_embed_first_chunk。此方法管理group、unit、静态、保留、动态区域。

       通过percpu.c中的关键变量__per_cpu_load和vmlinux.lds.S的链接脚本,我们了解了per-cpu加载时的地址符号。PERCPU_INPUT宏定义了静态原始数据的起始和结束符号。

       接下来,我们关注如何分配per-cpu元数据信息pcpu_alloc_info。percpu.c中的方法执行后,元数据分配如下图所示。

       接着,我们分析pcpu_alloc_alloc_info的方法,完成元数据分配。

       在pcpu_setup_first_chunk方法中,我们看到分配的smap和dmap在后期将通过slab再次分配。

       在main.c的抖音国际版多语言源码mm_init中,我们关注重点区域,完成map数组的slab分配。

       至此,我们探讨了Linux内核中per-cpu实现的原理,从设计到源码分析,全面展现了这一关键机制在现代服务器架构中的作用。

模拟器tiny源码分析(8)执行mov指令(五)段寄存器拾遗

       分析模拟器tiny源码中关于mov指令与内存访问的处理

       在分析mov指令时,我们关注到了指令可能访问内存,这自然引出了CPU内存地址的结构问题。内存地址通常由两部分组成:段寄存器和位偏移地址。

       在我们的分析中,大部分关注的都是偏移地址,但事实上,段寄存器通常默认为DS(数据段寄存器),除非通过段跨越前缀修改。

       以mov [bx],h为例,编译后指令序列显示为:0xc7,0x,0x,0x。而如果我们修改段前缀为ss,即mov ss:[bx],h,则指令序列变为:0x,0xc7,0x,0x,0x,这里多出了一字节。

       那么,tiny在处理段前缀时是如何操作的呢?答案是通过宏SEGREG。如果使用了段跨越前缀,参数1会决定使用哪个段寄存器,通常默认为DS;而参数2则决定偏移寄存器1的使用。

       参数3由两部分组成:一部分是偏移寄存器2,另一部分则是内存地址。最终,地址计算方式为:段寄存器* + 偏移寄存器1 + 偏移寄存器2 + 内存地址。这使得指令能够准确指向内存位置。

mcelog代码解析

       mcelog是Linux系统中一款专门用于检测硬件错误,尤其适用于内存和CPU错误的开源工具。

       工具官网:mcelog.org

       mcelog的运作流程主要分为以下几个关键步骤:

       一:错误触发流

       当系统检测到硬件错误事件,如内存错误或CPU错误时,mcelog会自动响应并执行后续处理。

       二:源代码结构

       mcelog的源代码主要由以下几个部分组成:

       1、主函数

       主函数是mcelog的核心逻辑,负责启动整个程序并执行关键任务。

       2、process回调处理函数

       process函数是程序处理的关键,每当系统检测到硬件错误事件,process回调函数会被自动调用。主要任务包括错误解析、统计和日志记录。

       3、mce_filter错误位置计数和触发trigger脚本函数

       这部分代码分为两大部分:错误解析和触发脚本执行。

       1)错误解析:包括对错误信息的解析和各维度的统计。

       2)触发:触发预设的脚本执行,执行如内存离线等操作。

       4、dump_mce寄存器解析和日志生成函数

       这部分主要负责对错误信息进行解析和生成日志文件,以便后续分析和记录。

Andorid进阶一:LeakCanary源码分析,从头到尾搞个明白

       内存优化掌握了吗?知道如何定位内存问题吗?面试官和蔼地问有些拘谨的小张。小张回答道:“就是用LeakCanary检测一下泄漏,找到对应泄漏的地方,修改错误的代码,回收没回收的引用,优化生命周期线程的依赖关系。”“那你了解LeakCanary分析内存泄漏的原理吗?”面试官追问。“不好意思,平时没有注意过。”小张心想:面试怎么总问这个,我只是一个普通的程序员。

       前言:

       应用性能优化是开发中不可或缺的一环,而内存优化尤为重要。内存泄漏导致的内存溢出崩溃和内存抖动带来的卡顿不流畅,都在切实影响着用户体验。LeakCanary常用于定位内存泄漏问题,是时候深入理解它的工作机制了。

       名词理解:

       hprof:hprof文件是Java的内存快照文件,格式后缀为.hprof,在LeakCanary中用于内存分析。WeakReference:弱引用,当对象仅被weak reference指向,没有任何其他strong reference指向时,在GC运行时,这个对象就会被回收,不论当前内存空间是否足够。在LeakCanary中用于监测被回收的无用对象是否被释放。Curtains:Square的另一个开源框架,用于处理Android窗口的集中式API,在LeakCanary中用于监测window rootView在detach后的内存泄漏。

       目录:

       本文将从以下几个方面进行分析:

       一,怎么用?

       查看官网文档可以看出,使用LeakCanary非常简单,只需添加相关依赖即可。debugImplementation只在debug模式的编译和最终的debug apk打包时有效。LeakCanary的初始化代码通过ContentProvider进行,会在AppWatcherInstaller类的oncreate方法中调用真正的初始化代码AppWatcher.manualInstall(application)。在AndroidManifest.xml中注册该provider,注册的ContentProvider会在application启动的时候自动回调oncreate方法。

       二,官方阐述

       安装LeakCanary后,它会通过4个步骤自动检测并报告内存泄漏:如果ObjectWatcher在等待5秒并运行垃圾收集后没有清除持有的弱引用,则被监视的对象被认为是保留的,并且可能会泄漏。LeakCanary会将其记录到Logcat中,并在泄漏列表展示中用Library Leak标签标记。LeakCanary附带一个已知泄漏的数据库,通过引用名称的模式匹配来识别泄漏,如Library Leaks。对于无法识别的泄漏,可以报告并自定义已知库泄漏的列表。

       三,监测activity,fragment,rootView和viewmodel

       初始化的代码关键在于AppWatcher作为Android平台使用ObjectWatcher封装的API中心,自动安装配置默认的监听。我们分析了四个默认监听的Watcher,包括ActivityWatcher,FragmentAndViewModelWatcher,RootViewWatcher和ServiceWatcher,分别用于监测activity,fragment,rootView和service的内存泄漏。

       四,ObjectWatcher保留对象检查分析

       LeakCanary通过ObjectWatcher监控内存泄漏,我们深入分析了其检查过程,包括创建弱引用,检查对应key对象的保留,以及内存快照转储和内存分析。

       五,总结

       本文全面分析了LeakCanary的实现原理,从安装、使用到内存泄漏的检测和分析,详细介绍了各个组件的作用和工作流程。通过深入理解LeakCanary,开发者可以更有效地定位和解决内存泄漏问题,优化应用性能。阅读源码不仅能深入了解LeakCanary的工作机制,还能学习到内存泄漏检测的通用方法和技巧。

+ 张图剖析内存分配之 malloc 详解

       内存分配之 malloc 详解

       malloc函数的复杂性使得直接分析其源码较为困难,但我们可以关注其操作过程。首先,理解malloc分配的内存结构十分重要。当我们使用malloc时,分配的内存不仅包括用户请求的大小,还会附带首部和尾部,用于管理。

       内存分配示例中,用户申请0x字节,实际分配的fill区域包含了系统预置的cookie和填补区。fill区域的上边和下边有gap,用于区分可使用和不可使用内存,并在归还时检测是否越界。debug header由上gap中的7个连续区域组成。

       进入程序前,系统会创建一个管理内存的堆空间,通过__cdecl_heap_init函数,构建一个个HEADER节点的链表,每个节点管理1MB内存。每个节点包含pHeapData指针,代表虚拟地址,尚未分配,将1MB分为个KB段。

       继续深入,pRegion指向的tagRegion结构中,每个内存段(group)有8个4KB内存页,链表中挂载着可用内存。分配时,会从挂载内存的链表中查找,若无则扩展到其他链表。归还时,通过比较地址范围判断归属group,并通过合并空闲内存块和更新分配次数来操作。

       当一个group全回收后,并非立刻归还给系统,而是等待其他group回收后再合并释放。这样可以避免频繁地与操作系统交互,提高效率。

linux内核源码:内存管理——内存分配和释放关键函数分析&ZGC垃圾回收

       本文深入剖析了Linux内核源码中的内存管理机制,重点关注内存分配与释放的关键函数,通过分析4.9版本的源码,详细介绍了slab算法及其核心代码实现。在内存管理中,slab算法通过kmem_cache结构体进行管理,利用数组的形式统一处理所有的kmem_cache实例,通过size_index数组实现对象大小与kmem_cache结构体之间的映射,从而实现高效内存分配。其中,关键的计算方法是通过查找输入参数的最高有效位序号,这与常规的0起始序号不同,从1开始计数。

       在找到合适的kmem_cache实例后,下一步是通过数组缓存(array_cache)获取或填充slab对象。若缓存中有可用对象,则直接从缓存分配;若缓存已空,会调用cache_alloc_refill函数从三个slabs(free/partial/full)中查找并填充可用对象至缓存。在对象分配过程中,array_cache结构体发挥了关键作用,它不仅简化了内存管理,还优化了内存使用效率。

       对象释放流程与分配流程类似,涉及数组缓存的管理和slab对象的回收。在cache_alloc_refill函数中,关键操作是检查slab_partial和slab_free队列,寻找空闲的对象以供释放。整个过程确保了内存资源的高效利用,避免了资源浪费。

       总结内存操作函数概览,栈与堆的区别是显而易见的。栈主要存储函数调用参数、局部变量等,而堆用于存放new出来的对象实例、全局变量、静态变量等。由于堆的动态分配特性,它无法像栈一样精准预测内存使用情况,导致内存碎片问题。为了应对这一挑战,Linux内核引入了buddy和slab等内存管理算法,以提高内存分配效率和减少碎片。

       然而,即便使用了高效的内存管理算法,内存碎片问题仍难以彻底解决。在C/C++中,没有像Java那样的自动垃圾回收机制,导致程序员需要手动管理内存分配与释放。如果忘记释放内存,将导致资源泄漏,影响系统性能。为此,业界开发了如ZGC和Shenandoah等垃圾回收算法,以提高内存管理效率和减少内存碎片。

       ZGC算法通过分页策略对内存进行管理,并利用“初始标记”阶段识别GC根节点(如线程栈变量、静态变量等),并查找这些节点引用的直接对象。此阶段采用“stop the world”(STW)策略暂停所有线程,确保标记过程的准确性。接着,通过“并发标记”阶段识别间接引用的对象,并利用多个GC线程与业务线程协作提高效率。在这一过程中,ZGC采用“三色标记”法和“remember set”机制来避免误回收正常引用的对象,确保内存管理的精准性。

       接下来,ZGC通过“复制算法”实现内存回收,将正常引用的对象复制到新页面,将旧页面的数据擦除,从而实现内存的高效管理。此外,通过“初始转移”和“并发转移”阶段进一步优化内存管理过程。最后,在“对象重定位”阶段,完成引用关系的更新,确保内存管理过程的完整性和一致性。

       通过实测,ZGC算法在各个阶段展现出高效的内存管理能力,尤其是标记阶段的效率,使得系统能够在保证性能的同时,有效地管理内存资源。总之,内存管理是系统性能的关键因素,Linux内核通过先进的算法和策略,实现了高效、灵活的内存管理,为现代操作系统提供稳定、可靠的服务。

UE4源码剖析:MallocBinned(上)

       近期着手UE4项目开发,对UnrealEngine已久仰慕,终于得此机会深入探索。鉴于项目内存性能问题,决定从内存分配器着手,深入研读UE4源码。虽个人水平有限,尚不能全面理解,但愿借此机会揭开源码神秘面纱,让新手朋友们不再感到陌生。

       UE4内存分配器位于硬件抽象层HAL(Hardware Abstraction Layer)中。具体装箱内存分配器代码位于VS项目目录:UE4/Source/Runtime/Core/Private/HAL/MallocBinned。

       分析从ApplePlatformMemory::BaseAllocator开始,可发现Mac平台的默认分配器为MallocBinned,iOS的默认分配器为MallocAnsi。以下将重点分析MallocBinned。

       一、确定对齐方式

       FScopeLock用于局部线程锁,确保线程同步。关于Alignment的确定,通常使用默认值。默认值取决于内存对齐方式,此处默认对齐为8字节。

       二、确定有足够空间来内存对齐

       代码中,SpareBytesCount用于确认空间足够。若分配内存小于8字节,则按Alignment大小匹配箱体;若大于8字节,则按Size + Alignment - sizeof(FFreeMem)匹配箱体。

       三、确定箱体大小

       根据Size的大小,有三种不同的处理方式。k以下的内存分配采用装箱分配,PoolTable中包含个不同大小的池子。

       四、初始化内存池

       分析内存池初始化过程,主要工作包括:确定内存大小,分配内存块,设置内存池基本信息。

       五、内存装箱

       AllocateBlockFromPool从内存池中分配一个Block,实现内存装箱过程。