1.单目USB摄像和Intel Realsense D435i 头+ Apriltag_ros配置和实现对相机姿态的象棋x象估计
单目USB摄像和Intel Realsense D435i 头+ Apriltag_ros配置和实现对相机姿态的估计
配置平台:ROS版本:noetic/melodic,Ubuntu:.LTS/.LTS
一:AprilTag_ros的源码配置
1.1 usb摄像头的安装和使用
1.1.1下载源码
1.1.2编译工作空间
1.1.3添加usb_cam属性文件
1.1.4编译usb_cam源码
回到工作空间的src文件中,再去usb_cam中进行编译
5.测试USB摄像头
1)运行ROS
回到usb_cam的象棋x象launch文件夹中,运行usb_cam的源码功能包
1.2 AprilTag_ros包的安装
安装依赖库apriltag
编译依赖库apriltag
进入 apriltag 文件夹中,然后新建文件夹build
安装AprilTag_ros包
将源码拷贝到你的象棋x象工作空间中的src工作目录下
回到工作空间进行编译
1.3 单目摄像机的标定
摄像机标定是通过寻找对象在图像与现实世界的转换数学关系,找出其定量的源码源码防倒卖联系,从而实现从图像中测量出现实中实际数据的象棋x象目的,基于此才能实现后面的源码位姿检测。
1.3.1安装标定功能包
1.3.2打开摄像头进行标定
第二条命令参数说明:size:棋盘内交叉点的象棋x象个数,行*列square:一个格子的源码边长,单位是象棋x象mimage:订阅摄像头发布的图像话题(ROS topic)camera:寻找相应的设备相机名(现实情况应该是/dev,仿真的源码话,不清楚)
摄像机的象棋x象开源chatgpt源码校准是以一个由黑白方块组成的棋盘为基准进行的,如图8-8所示。源码从下面的象棋x象地址下载8x6国际象棋棋盘,并打印出来后将其贴到一个平坦的纸箱。有时也会打印成超过1米的棋盘,但这里用的是A4纸。作为参考,怎么溯源码8x6棋盘横向有9个方块,所以有8个交叉点,而竖向有7个方块,有6个交叉点,所以它被称为8x6棋盘。
/AprilRobotic... Tag Size Definition 部分可以看到并排的fir公式源码6个二维码,下面的字符串(如:“Tagh” 和 “TagCircleh7”)就是二维码类型,直接替换即可。其他参数使用默认值即可。
2.配置 tags.yaml
这个文件只有两个标签可以编写。
这里面写要使用多少个二维码,apriltag_ros 允许一张中出现多个二维码,npv指标源码但一定要明确每个二维码类型,如果想要添加的话这样写就可以,但记得两个标签都要添加:
standalone_tags解释:
id:你给每个二维码的编号,可以从任意数字开始,只要你自己能区分哪个号是哪个二维码就好;
size:二维码的长度。这个值是需要手动测量出来的,不同类型的二维码测量方式不同,具体可以看他的链接 github.com/AprilRobotic... Tag Size Definition 部分,红色箭头就是你需要手动侧脸的二维码长度,单位是米,然后填写到这里;
name:和id一样,这是为了更好地区分可以任起;
tag_bundles注释:
修改 continuous_detection.launch 文件
打开 apriltag_ros/launch/continuous_detection.launch 文件。
需要修改的主要有两个标签:
这两个值是在 rostopic list中查看相机发布的话题中看见,如果你用的不是realsense,那么需要按照相机包发布出来的话题名修改,这里用的是默认设置的 realsense 相机话题。
注意:“camera_name” 一定只能用前缀,如果多加了 “/” 会导致算法订阅到的话题变成了 “/camera/color//image_raw” 这样是不会出数据的,因为后面其实是做了一个字符串拼接:
最终修改如下:
4.启动 apriltag_ros 算法
如果没有出现红色的报错说明启动成功了,如果有则检查 yaml 文件有没有出现多一个逗号或者省略号之类的。
然后再开一个窗口就可以订阅推算出来的话题:
正确检测到的应该会有下面的信息: