1.Unity3D MMORPG核心技术:AOI算法源码分析与详解
2.源代码都要买吗
3.Unity JSON编码解码 之 LitJson 深度剖析
4.unity urp源码学习一(渲染流程)
5.UGUI源码介绍
6.《Unity 3D 内建着色器源码剖析》第四章 引擎提供的怖源怖游着色器工具函数和数据结构
Unity3D MMORPG核心技术:AOI算法源码分析与详解
Unity3D是一款跨平台的游戏引擎,在游戏开发领域应用广泛。怖源怖游MMORPG(大型多人在线角色扮演游戏)作为游戏开发的怖源怖游重要领域,在Unity3D中也得到广泛应用。怖源怖游玩家之间的怖源怖游交互是游戏开发中一个重要问题。如何高效处理这些交互?AOI(Area of Interest)算法提供了一个有效解决方案。怖源怖游营销指标源码 AOI算法是怖源怖游一种空间索引算法,能够依据玩家位置快速确定周围玩家,怖源怖游从而提高交互效率。怖源怖游实现AOI算法通常采用Quadtree(四叉树)或Octree(八叉树),怖源怖游将空间划分为多个区域,怖源怖游每个区域可包含若干玩家。怖源怖游 以下为AOI算法实现方法和代码解释。怖源怖游 **实现方法**将空间划分为多个区域(Quadtree或Octree)。怖源怖游
玩家移动、怖源怖游加入或离开时,更新对应区域。
玩家查找周围玩家时,遍历相关区域。
**代码实现**使用C#语言实现Quadtree。
编写函数,实现玩家进入/离开、移动和查找玩家。
通过上述方法和代码,AOI算法可以在MMORPG中高效处理玩家交互,优化游戏性能和玩家体验。源代码都要买吗
不是的,很多代码都是开源的,很多人都是会分享自己的代码的,除了纯盈利性的golang源码解析项目,但是也可能会有源码流出的,网上有很多,要找到合适自己的,自己想要的,需要慢慢找。本人有空的时候也会写些unity的小游戏,可以相互交流交流。
Unity JSON编码解码 之 LitJson 深度剖析
JSON,即JavaScript Object Notation,是一种轻量级的数据交换格式,它基于ECMAScript标准,以文本形式表示数据,易于人读和机器解析,提高网络传输效率。基本数据类型包括Boolean、Double、Float、Int、Long和String,而Object和Array则作为容器,可嵌套其他类型的数据。
编码(序列化)过程是将编程语言中的数据对象转换为JSON文本,解码(反序列化)则是解析JSON文本,识别数据类型,如识别花括号{ }表示对象,方括号[]表示数组。Unity C#中, LitJson库常用于处理JSON的编码和解码。
在Unity项目中使用LitJson,迷你国 源码步骤简单:首先,将库下载并添加到项目中;然后,定义一个测试数据对象,如GameItem,进行编码和解码操作。编码时,使用JsonMapper的ToJson方法将对象转换为Json String;解码时,通过JsonMapper的ToObject方法将JsonText.txt中的文本解析为JsonData对象,进而访问其中的数据。
LitJson的核心源码分析,JsonData是其核心数据结构,它以JsonType枚举表示数据类型,存储相应类型的数据。Object和Array分别用Dictionary和List作为容器,通过重载[]操作符和类型强转操作符,实现了灵活的数据访问和转换。JsonWrapper则负责解析JSON字符串,生成对应的Json对象。
unity urp源码学习一(渲染流程)
sprt的一些基础:
绘制出物体的关键代码涉及设置shader标签(例如"LightMode" = "CustomLit"),以确保管线能够获取正确的shader并绘制物体。排序设置(sortingSettings)管理渲染顺序,如不透明物体从前至后排序,透明物体从后至前,以减少过绘制。逐物体数据的启用、动态合批和gpuinstance支持,以及主光源索引等配置均在此进行调整。
过滤规则(filteringSettings)允许选择性绘制cullingResults中的几何体,依据RenderQueue和LayerMask等条件进行过滤。晚安星球源码
提交渲染命令是关键步骤,无论使用context还是commandbuffer,调用完毕后必须执行提交操作。例如,context.DrawRenderers()用于绘制场景中的网格体,本质上是执行commandbuffer以渲染网格体。
sprt管线的基本流程涉及context的命令贯穿整个渲染流程。例如,首次调用渲染不透明物体,随后可能调用渲染半透明物体、天空盒、特定层渲染等。流程大致如下:
多相机情况也通过单个context实现渲染。
urp渲染流程概览:
渲染流程始于遍历相机,如果是游戏相机,则调用RenderCameraStack函数。此函数区分base相机和Overlay相机:base相机遍历渲染自身及其挂载的Overlay相机,并将Overlay内容覆盖到base相机上;Overlay相机仅返回,不进行渲染操作。
RenderCameraStack函数接受CameraData参数,其中包含各种pass信息。添加pass到m_ActiveRenderPassQueue队列是关键步骤,各种pass类实例由此添加至队列。
以DrawObjectsPass为例,其渲染流程在UniversialRenderer.cs中实现。首先在Setup函数中将pass添加到队列,执行时,执行队列内的pass,并按顺序提交渲染操作。opencv卷积源码
UGUI源码介绍
本文提供对Unity UI系统(UGUI)源码的概览,内容主要来自官方文档。
UGUI主要由EventSystem和UI两部分构成。
EventSystem部分包含输入模块和射线投射器。输入模块用于配置事件系统的主要逻辑,提供不同平台的开箱即用选项,支持各类输入系统如触控、控制器、键盘和鼠标,并将事件分发至对应组件。射线投射器则用于检测事件位置,决定事件传递至的UI元素。
UI部分结构相对复杂,包含多个类和接口,如IMaterialModifier和IndexedSet等。IMaterialModifier接口允许修改用于渲染的Material,IndexedSet是一种结合List和Dictionary实现的自定义容器,提供快速移除和插入元素的功能,但牺牲了顺序和序列化的友好性。
总之,UGUI源码通过模块化设计和接口定义,为开发者提供了丰富的UI构建和事件处理能力。
《Unity 3D 内建着色器源码剖析》第四章 引擎提供的着色器工具函数和数据结构
在Unity 3D引擎中,着色器是构建3D场景和实现视觉效果的核心组件。Unity提供了丰富的着色器工具函数和数据结构,帮助开发者高效地创建复杂的视觉效果。本章节将深入探讨Unity引擎提供的着色器工具和数据结构。
在UnityShaderVariables.cginc文件中,包含了一系列着色器常量和函数,其中最重要的是与立体多例化渲染相关的宏。立体多例化渲染技术能显著提升渲染性能,通过一次向渲染管道提交两份几何体数据,减少DrawCall次数。启用此功能需要在Project Settings面板中勾选Virtual Reality Supported和Single-Pass Stereo Rendering选项。启用后,宏UNITY_SINGLE_PASS_STEREO将被激活,这表示引擎将使用单程立体渲染。
UnityShaderVariables.cginc文件还提供了与摄像机相关的常量缓冲区、光照相关的工具函数和内置光源、与阴影相关的着色器常量缓冲区、逐帧绘制调用相关的着色器常量缓冲区UnityPerDraw、与雾效果相关的常量缓冲区以及与光照贴图相关的常量缓冲区。这些元素共同构成了Unity引擎提供的着色器工具框架。
在UnityCG.cginc文件中,开发者可以找到数学常数、颜色空间相关的常数和工具函数、描述顶点布局格式的结构体、用于进行空间变换的工具函数、与光照计算相关的工具函数、与HDR及光照贴图颜色编解码相关的工具函数。这些工具函数和宏为着色器编写提供了便利,简化了复杂计算的实现。
对于实际的HDR实现,通常遵循渲染、编码、降采样、色调映射等步骤。采用更高精度的浮点数进行计算可以提供更丰富的颜色表现,但这也带来了内存存储空间和带宽需求的增加。RGBM是一种颜色编码方式,它在不同的工作流中具有不同的取值范围。为了在使用高精度浮点渲染目标时降低存储成本,需要将高精度数据编码到低精度缓冲区。Unity提供了编码、解码和处理法线贴图的函数,以及线性化深度值、合并单程立体渲染图像等功能。
最后,Unity提供了实现图像效果所需的工具函数和预定义结构体,以及计算屏幕坐标、与阴影处理相关的工具函数和宏。这些工具函数和宏为开发者提供了灵活多样的解决方案,使着色器编写更加高效和直观。
URP(渲染管线定义,源码解析)
本文详细解析了Unity渲染管线(URP)的内部工作原理和源码结构,深入探讨了URP如何实现高效的渲染流程和丰富的渲染特性。首先,我们介绍了UnityEngine.CoreModule和UnityEngine.Rendering.Universal命名空间的基本概念,理解了它们在URP中的角色。然后,通过查找CreatePipeline方法和分析UniversalRenderPipeline实例的内部结构,揭示了URP实例化和初始化的过程。
在渲染管线实例阶段,我们聚焦于UniversalRenderPipeline实例的Render方法,以及它在每帧执行的任务,特别是Profiling器的使用,这为性能优化提供了重要的工具。接着,文章深入探讨了ScriptableRenderer类,它实现了渲染策略,包括剔除、照明以及效果支持的描述,展示了其在渲染过程中如何与摄像机交互。
对于渲染过程的细节,文章详细说明了从设置图形参数、执行剔除、初始化光照、执行渲染Pass到后处理阶段的流程。特别关注了渲染Pass的执行,以及如何通过自定义RenderPass来扩展URP的功能。在渲染结束后,文章还介绍了如何使用ProfilingScope进行性能分析,为优化渲染管线提供了实用的工具。
综上所述,本文以深入的技术细节,全面解析了Unity URP渲染管线的内部机制,旨在帮助开发者更好地理解URP的实现原理,进而优化其应用中的渲染性能。
Unity源码学习遮罩:Mask与Mask2D
Unity源码学习遮罩详解:Mask与Mask2D UGUI裁切功能主要有两种方式:Mask和Mask2D。它们各自有独特的原理和适用场景。1. Mask原理与实现
Mask利用IMaskable和IMaterialModifier功能,通过指定一张裁切图,如圆形,限定子元素的显示区域。GPU通过StencilBuffer(一个用于保存像素标记的缓存)来控制渲染,当子元素像素位于Mask指定区域时,才会被渲染。 StencilBuffer像一个画板,每个像素有一个1字节的内存区域,记录是否被遮盖。当多个UI元素叠加时,通过stencil buffer传递信息,实现精确裁切。2. Mask2D原理
RectMask2D则基于IClippable接口,其裁剪基于RectTransform的大小。在C#层,它找出所有RectMask2D的交集并设置剪裁区域,然后Shader层依据这些区域判断像素是否在内,不满足则透明度设为0。 RectMask2D的性能优化在于无需依赖Image组件,直接使用RectTransform的大小作为裁剪区域。3. 性能区别
Mask需要Image组件,裁剪区域受限于Image,而RectMask2D独立于Image,裁剪灵活。因此,Mask2D在不需要复杂裁剪时更高效。 总结:虽然Mask和Mask2D各有优势,选择哪种遮罩取决于具体需求,合理使用能提高性能和用户体验。Unity的URP HDRP等SRP管线详解(包含源码分析)
SRP为可编程渲染管线,Unity中通过C#能自定义多种渲染管线,包含通用管线(URP)与高清管线(HDRP)。
URP通用管线,综合性能与表现力,适合手游或端游场景;HDRP为高清管线,拥有极致表现力,适用于端游、影视制作。
大体结构包括:RenderPipelineAsset、RenderPipelines、Renderer与RenderPass。RenderFeature为辅助组件,配置特定事件并注入到Renderer中的时机进行执行。
具体分析:在RenderPipelineAsset中,创建多条渲染管线。RenderPipelines则构成具体渲染流程,于每一帧调用Render()处理本帧命令,绘制图像。
Renderer维护ScriptableRenderPass列表,每帧通过SetUp()注入Pass执行渲染过程,最终得到序列化结果(ScriptableRendererData)。
RenderPass实现具体渲染逻辑,其Execute()函数执行于每一帧,实现渲染功能。
RenderFeature主要提供“空壳”结构,通过配置RenderPassEvent并注入实例到Renderer中。
总结:理解URP架构,能掌握渲染管线核心。后续将继续分享渲染案例、实用工具等内容。