1.MapReduce源码解析之InputFormat
2.å¦ä½åå¸å¼è¿è¡mapreduceç¨åº
3.å¦ä½ä½¿ç¨Python为Hadoopç¼åä¸ä¸ªç®åçMapReduceç¨åº
4.Java开发书籍推荐(200多本)
MapReduce源码解析之InputFormat
导读
深入探讨MapReduce框架的码书核心组件——InputFormat。此组件在处理多样化数据类型时,码书扮演着数据格式化和分片的码书角色。通过设置job.setInputFormatClass(TextInputFormat.class)等操作,码书程序能正确处理不同文件类型。码书InputFormat类作为抽象基础,码书会员发卡源码定义了文件切分逻辑和RecordReader接口,码书用于读取分片数据。码书本节将解析InputFormat、码书InputSplit、码书RecordReader的码书结构与实现,以及如何在Map任务中应用此框架。码书
类图与源码解析
InputFormat类提供了两个关键抽象方法:getSplits()和createRecordReader()。码书下载zigbee源码getSplits()负责规划文件切分策略,码书定义逻辑上的码书分片,而RecordReader则从这些分片中读取数据。
InputSplit类承载了切分逻辑,表示了给定Mapper处理的逻辑数据块,包含所有K-V对的云豹源码平台集合。
RecordReader类实现了数据读取流程,其子类如LineRecordReader,提供行数据读取功能,将输入流中的数据按行拆分,赋值为Key和Value。
具体实现与操作流程
在getSplits()方法中,获取通讯源码FileInputFormat类负责将输入文件按照指定策略切分成多个InputSplit。
TextInputFormat类的createRecordReader()方法创建了LineRecordReader实例,用于读取文件中的每一行数据,形成K-V对。
Mapper任务执行时,通过调用RecordReader的骡马源码 教程nextKeyValue()方法,读取文件的每一行,完成数据处理。
在Map任务的run()方法中,MapContextImp类实例化了一个RecordReader,用于实现数据的迭代和处理。
总结
本文详细阐述了MapReduce框架中InputFormat的实现原理及其相关组件,包括类图、源码解析、具体实现与操作流程。后续文章将继续探讨MapReduce框架的其他关键组件源码解析,为开发者提供深入理解MapReduce的构建和优化方法。
å¦ä½åå¸å¼è¿è¡mapreduceç¨åº
ä¸ã é¦å è¦ç¥éæ¤åæ 转载
ããè¥å¨windowsçEclipseå·¥ç¨ä¸ç´æ¥å¯å¨mapreducç¨åºï¼éè¦å æhadoopé群çé ç½®ç®å½ä¸çxmlé½æ·è´å°srcç®å½ä¸ï¼è®©ç¨åºèªå¨è¯»åé群çå°ååå»è¿è¡åå¸å¼è¿è¡(æ¨ä¹å¯ä»¥èªå·±åjava代ç å»è®¾ç½®jobçconfigurationå±æ§)ã
ããè¥ä¸æ·è´ï¼å·¥ç¨ä¸binç®å½æ²¡æå®æ´çxmlé ç½®æ件ï¼åwindowsæ§è¡çmapreduceç¨åºå ¨é¨éè¿æ¬æºçjvmæ§è¡ï¼ä½ä¸åä¹æ¯å¸¦æâlocal"åç¼çä½ä¸ï¼å¦ job_local_ã è¿ä¸æ¯çæ£çåå¸å¼è¿è¡mapreduceç¨åºã
ãã估计å¾ç 究org.apache.hadoop.conf.Configurationçæºç ï¼åæ£xmlé ç½®æ件ä¼å½±åæ§è¡mapreduce使ç¨çæ件系ç»æ¯æ¬æºçwindowsæ件系ç»è¿æ¯è¿ç¨çhdfsç³»ç»; è¿æå½±åæ§è¡mapreduceçmapperåreducerçæ¯æ¬æºçjvmè¿æ¯é群éé¢æºå¨çjvm
ããäºã æ¬æçç»è®º
ãã第ä¸ç¹å°±æ¯ï¼ windowsä¸æ§è¡mapreduceï¼å¿ é¡»æjarå å°ææslaveèç¹æè½æ£ç¡®åå¸å¼è¿è¡mapreduceç¨åºãï¼æ个éæ±æ¯è¦windowsä¸è§¦åä¸ä¸ªmapreduceåå¸å¼è¿è¡ï¼
ãã第äºç¹å°±æ¯ï¼ Linuxä¸ï¼åªéæ·è´jaræ件å°é群masterä¸,æ§è¡å½ä»¤hadoop jarPackage.jar MainClassNameå³å¯åå¸å¼è¿è¡mapreduceç¨åºã
ãã第ä¸ç¹å°±æ¯ï¼ æ¨è使ç¨éä¸ï¼å®ç°äºèªå¨æjarå 并ä¸ä¼ ï¼åå¸å¼æ§è¡çmapreduceç¨åºã
ããéä¸ã æ¨è使ç¨æ¤æ¹æ³ï¼å®ç°äºèªå¨æjarå 并ä¸ä¼ ï¼åå¸å¼æ§è¡çmapreduceç¨åºï¼
ãã请å åèåæäºç¯ï¼
ããHadoopä½ä¸æ交åæï¼ä¸ï¼~~ï¼äºï¼
ããå¼ç¨åæçé件ä¸EJob.javaå°å·¥ç¨ä¸ï¼ç¶åmainä¸æ·»å å¦ä¸æ¹æ³å代ç ã
ããpublic static File createPack() throws IOException {
ããFile jarFile = EJob.createTempJar("bin");
ããClassLoader classLoader = EJob.getClassLoader();
ããThread.currentThread().setContextClassLoader(classLoader);
ããreturn jarFile;
ãã}
ããå¨ä½ä¸å¯å¨ä»£ç ä¸ä½¿ç¨æå ï¼
ããJob job = Job.getInstance(conf, "testAnaAction");
ããæ·»å ï¼
ããString jarPath = createPack().getPath();
ããjob.setJar(jarPath);
ããå³å¯å®ç°ç´æ¥run as java application å¨windowsè·åå¸å¼çmapreduceç¨åºï¼ä¸ç¨æå·¥ä¸ä¼ jaræ件ã
ããéäºãå¾åºç»è®ºçæµè¯è¿ç¨
ããï¼æªæ空ç书ï¼åªè½éè¿æ笨çæµè¯æ¹æ³å¾åºç»è®ºäºï¼
ããä¸. ç´æ¥éè¿windowsä¸Eclipseå³å»mainç¨åºçjavaæ件ï¼ç¶å"run as application"æéæ©hadoopæ件"run on hadoop"æ¥è§¦åæ§è¡MapReduceç¨åºçæµè¯ã
ãã1ï¼å¦æä¸æjarå å°è¿é群任ælinuxæºå¨ä¸ï¼å®æ¥éå¦ä¸ï¼
ãã[work] -- ::, - org.apache.hadoop.mapreduce.Job - [main] INFO org.apache.hadoop.mapreduce.Job - map 0% reduce 0%
ãã[work] -- ::, - org.apache.hadoop.mapreduce.Job - [main] INFO org.apache.hadoop.mapreduce.Job - Task Id : attempt___m__0, Status : FAILED
ããError: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class bookCount.BookCount$BookCountMapper not found
ããat org.apache.hadoop.conf.Configuration.getClass(Configuration.java:)
ããat org.apache.hadoop.mapreduce.task.JobContextImpl.getMapperClass(JobContextImpl.java:)
ããat org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:)
ããat org.apache.hadoop.mapred.MapTask.run(MapTask.java:)
ããat org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:)
ããat java.security.AccessController.doPrivileged(Native Method)
ããat javax.security.auth.Subject.doAs(Subject.java:)
ããat org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:)
ããat org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:)
ããCaused by: java.lang.ClassNotFoundException: Class bookCount.BookCount$BookCountMapper not found
ããat org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:)
ããat org.apache.hadoop.conf.Configuration.getClass(Configuration.java:)
ãã... 8 more
ãã# Error:åéå¤ä¸æ¬¡
ãã-- ::, - org.apache.hadoop.mapreduce.Job - [main] INFO org.apache.hadoop.mapreduce.Job - map % reduce %
ããç°è±¡å°±æ¯ï¼æ¥éï¼æ è¿åº¦ï¼æ è¿è¡ç»æã
ãã
ãã2ï¼æ·è´jarå å°âåªæ¯âé群masterç$HADOOP_HOME/share/hadoop/mapreduce/ç®å½ä¸ï¼ç´æ¥éè¿windowsçeclipse "run as application"åéè¿hadoopæ件"run on hadoop"æ¥è§¦åæ§è¡ï¼å®æ¥éåä¸ã
ããç°è±¡å°±æ¯ï¼æ¥éï¼æ è¿åº¦ï¼æ è¿è¡ç»æã
ãã3ï¼æ·è´jarå å°é群æäºslaveç$HADOOP_HOME/share/hadoop/mapreduce/ç®å½ä¸ï¼ç´æ¥éè¿windowsçeclipse "run as application"åéè¿hadoopæ件"run on hadoop"æ¥è§¦åæ§è¡
ããåæ¥éï¼
ããError: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class bookCount.BookCount$BookCountMapper not found
ããat org.apache.hadoop.conf.Configuration.getClass(Configuration.java:)
ããat org.apache.hadoop.mapreduce.task.JobContextImpl.getMapperClass(JobContextImpl.java:)
ããåæ¥éï¼
ããError: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class bookCount.BookCount$BookCountReducer not found
ãã
ããç°è±¡å°±æ¯ï¼ææ¥éï¼ä½ä»ç¶æè¿åº¦ï¼æè¿è¡ç»æã
å¦ä½ä½¿ç¨Python为Hadoopç¼åä¸ä¸ªç®åçMapReduceç¨åº
MichaelG.Nollå¨ä»çBlogä¸æå°å¦ä½å¨Hadoopä¸ç¨Pythonç¼åMapReduceç¨åºï¼é©å½çgogamzaå¨å ¶Bolgä¸ä¹æå°å¦ä½ç¨Cç¼åMapReduceç¨åºï¼æç¨å¾®ä¿®æ¹äºä¸ä¸åç¨åº,å 为ä»çMap对åè¯åå使ç¨tabé®ï¼ãæå并ä»ä»¬ä¸¤äººçæç« ï¼ä¹è®©å½å çHadoopç¨æ·è½å¤ä½¿ç¨å«çè¯è¨æ¥ç¼åMapReduceç¨åºãããé¦å æ¨å¾é 好æ¨çHadoopé群ï¼è¿æ¹é¢çä»ç»ç½ä¸æ¯è¾å¤ï¼è¿å¿ç»ä¸ªé¾æ¥ï¼Hadoopå¦ä¹ ç¬è®°äºå®è£ é¨ç½²ï¼ãHadoopStreaming帮å©æ们ç¨éJavaçç¼ç¨è¯è¨ä½¿ç¨MapReduceï¼Streamingç¨STDIN(æ åè¾å ¥)åSTDOUT(æ åè¾åº)æ¥åæ们ç¼åçMapåReduceè¿è¡æ°æ®ç交æ¢æ°æ®ãä»»ä½è½å¤ä½¿ç¨STDINåSTDOUTé½å¯ä»¥ç¨æ¥ç¼åMapReduceç¨åºï¼æ¯å¦æ们ç¨Pythonçsys.stdinåsys.stdoutï¼æè æ¯Cä¸çstdinåstdoutãããæ们è¿æ¯ä½¿ç¨Hadoopçä¾åWordCountæ¥å示èå¦ä½ç¼åMapReduceï¼å¨WordCountçä¾åä¸æ们è¦è§£å³è®¡ç®å¨ä¸æ¹ææ¡£ä¸æ¯ä¸ä¸ªåè¯çåºç°é¢çãé¦å æ们å¨Mapç¨åºä¸ä¼æ¥åå°è¿æ¹ææ¡£æ¯ä¸è¡çæ°æ®ï¼ç¶åæ们ç¼åçMapç¨åºæè¿ä¸è¡æç©ºæ ¼åå¼æä¸ä¸ªæ°ç»ã并对è¿ä¸ªæ°ç»éåæ"1"ç¨æ åçè¾åºè¾åºæ¥ï¼ä»£è¡¨è¿ä¸ªåè¯åºç°äºä¸æ¬¡ãå¨Reduceä¸æ们æ¥ç»è®¡åè¯çåºç°é¢çãããããPythonCodeããMap:mapper.pyãã#!/usr/bin/envpythonimportsys#mapswordstotheircountsword2count={ }#inputcomesfromSTDIN(standardinput)forlineinsys.stdin:#removeleadingandtrailingwhitespaceline=line.strip()#splitthelineintowordswhileremovinganyemptystringswords=filter(lambdaword:word,line.split())#increasecountersforwordinwords:#writetheresultstoSTDOUT(standardoutput);#whatweoutputherewillbetheinputforthe#Reducestep,i.e.theinputforreducer.py##tab-delimited;thetrivialwordcountis1print'%s\t%s'%(word,1)ããReduce:reducer.pyãã#!/usr/bin/envpythonfromoperatorimportitemgetterimportsys#mapswordstotheircountsword2count={ }#inputcomesfromSTDINforlineinsys.stdin:#removeleadingandtrailingwhitespaceline=line.strip()#parsetheinputwegotfrommapper.pyword,count=line.split()#convertcount(currentlyastring)tointtry:count=int(count)word2count[word]=word2count.get(word,0)+countexceptValueError:#countwasnotanumber,sosilently#ignore/discardthislinepass#sortthewordslexigraphically;##thisstepisNOTrequired,wejustdoitsothatour#finaloutputwilllookmoreliketheofficialHadoop#wordcountexamplessorted_word2count=sorted(word2count.items(),key=itemgetter(0))#writetheresultstoSTDOUT(standardoutput)forword,countinsorted_word2count:print'%s\t%s'%(word,count)ããCCodeããMap:Mapper.cãã#include#include#include#include#defineBUF_SIZE#defineDELIM"\n"intmain(intargc,char*argv[]){ charbuffer[BUF_SIZE];while(fgets(buffer,BUF_SIZE-1,stdin)){ intlen=strlen(buffer);if(buffer[len-1]=='\n')buffer[len-1]=0;char*querys=index(buffer,'');char*query=NULL;if(querys==NULL)continue;querys+=1;/*nottoinclude'\t'*/query=strtok(buffer,"");while(query){ printf("%s\t1\n",query);query=strtok(NULL,"");}}return0;}h>h>h>h>ããReduce:Reducer.cãã#include#include#include#include#defineBUFFER_SIZE#defineDELIM"\t"intmain(intargc,char*argv[]){ charstrLastKey[BUFFER_SIZE];charstrLine[BUFFER_SIZE];intcount=0;*strLastKey='\0';*strLine='\0';while(fgets(strLine,BUFFER_SIZE-1,stdin)){ char*strCurrKey=NULL;char*strCurrNum=NULL;strCurrKey=strtok(strLine,DELIM);strCurrNum=strtok(NULL,DELIM);/*necessarytocheckerrorbut.*/if(strLastKey[0]=='\0'){ strcpy(strLastKey,strCurrKey);}if(strcmp(strCurrKey,strLastKey)){ printf("%s\t%d\n",strLastKey,count);count=atoi(strCurrNum);}else{ count+=atoi(strCurrNum);}strcpy(strLastKey,strCurrKey);}printf("%s\t%d\n",strLastKey,count);/*flushthecount*/return0;}h>h>h>h>ããé¦å æ们è°è¯ä¸ä¸æºç ï¼ããchmod+xmapper.pychmod+xreducer.pyecho"foofooquuxlabsfoobarquux"|./mapper.py|./reducer.pybar1foo3labs1quux2g++Mapper.c-oMapperg++Reducer.c-oReducerchmod+xMapperchmod+xReducerecho"foofooquuxlabsfoobarquux"|./Mapper|./Reducerbar1foo2labs1quux1foo1quux1ããä½ å¯è½çå°Cçè¾åºåPythonçä¸ä¸æ ·,å 为Pythonæ¯æä»æ¾å¨è¯å ¸éäº.æ们å¨Hadoopæ¶,ä¼å¯¹è¿è¿è¡æåº,ç¶åç¸åçåè¯ä¼è¿ç»å¨æ åè¾åºä¸è¾åº.ããå¨Hadoopä¸è¿è¡ç¨åºããé¦å æ们è¦ä¸è½½æ们çæµè¯ææ¡£wget页é¢ä¸æä¸çç¨phpç¼åçMapReduceç¨åº,ä¾phpç¨åºååèï¼Map:mapper.phpãã#!/usr/bin/php$word2count=array();//inputcomesfromSTDIN(standardinput)while(($line=fgets(STDIN))!==false){ //removeleadingandtrailingwhitespaceandlowercase$line=strtolower(trim($line));//splitthelineintowordswhileremovinganyemptystring$words=preg_split('/\W/',$line,0,PREG_SPLIT_NO_EMPTY);//increasecountersforeach($wordsas$word){ $word2count[$word]+=1;}}//writetheresultstoSTDOUT(standardoutput)//whatweoutputherewillbetheinputforthe//Reducestep,i.e.theinputforreducer.pyforeach($word2countas$word=>$count){ //tab-delimitedecho$word,chr(9),$count,PHP_EOL;}?>ããReduce:mapper.phpãã#!/usr/bin/php$word2count=array();//inputcomesfromSTDINwhile(($line=fgets(STDIN))!==false){ //removeleadingandtrailingwhitespace$line=trim($line);//parsetheinputwegotfrommapper.phplist($word,$count)=explode(chr(9),$line);//convertcount(currentlyastring)toint$count=intval($count);//sumcountsif($count>0)$word2count[$word]+=$count;}//sortthewordslexigraphically////thissetisNOTrequired,wejustdoitsothatour//finaloutputwilllookmoreliketheofficialHadoop//wordcountexamplesksort($word2count);//writetheresultstoSTDOUT(standardoutput)foreach($word2countas$word=>$count){ echo$word,chr(9),$count,PHP_EOL;}?>ããä½è ï¼é©¬å£«åå表äºï¼--
Java开发书籍推荐(多本)
整理了一份关于Java开发的电子书资源,共约本PDF版本,分享给需要的朋友们。 全部免费获取,无需添加QQ,无需关注公众号,直接使用百度网盘链接下载。 请在下载后给予我一个赞,顺便分享给还在寻找资源的兄弟们。 以下目录展示了部分书单内容,以供参考: Java - 天学通Java - Effective Java中文版(第2版) - Head First Java 中文高清版 - EXPERT.ONE.ON.ONE.J2EE.DEVELOPMENT.WITHOUT.EJB-中文 - Java 程序员进阶之路(亮白版) - Hibernate实战(第2版) - Java 8 实战 - Java8函数式编程 - Java8中的炫酷特性和Java9中的新特性-杨晓峰 - JavaNIO(中文版) - JAVA优化编程 - Java加密与解密的艺术 梁栋 - Java基础与案例开发详解 - Java学习路线图:Java必须知道的个问题 - Java并发编程的艺术 - JVM - Java虚拟机基础教程 高清中文版PDF - Java虚拟机并发编程 - Java虚拟机规范(Java SE 8版)(带书签完整版) - 实战JAVA虚拟机 JVM故障诊断与性能优化 - 揭秘Java虚拟机-JVM设计原理与实现 - 深入理解Java虚拟机JVM高级特性与最佳实践第3版(周志朋) - 解析Java虚拟机器开发:权衡优化、高效和安全的最优方案 Kubernetes - Kubernetes实战 ,吴龙辉 ,P - Kubernetes开源书 - Kubernetes指南(Kubernetes Handbook) - Kubernetes权威指南第2版 - Kubernetes经典实例 - 阿里云深入浅出Kubernetes项目实战手册 - 基于Kubernetes的容器云平台实战 Linux - linux常用命令大全 - Linux宝典 - Linux环境编程:从应用到内核 - LINUX防火墙(原书第3版) - Linux高级程序设计中文第三版杨宗德--人电出版社 - [Linux命令详解词典].施威铭研究室.扫描版 - 深入Linux内核架构 (图灵程序设计丛书·LinuxUNIX系列) - 鸟哥的LINUX私房菜_基础学习篇(第三版) - 鸟哥的LINUX私房菜:服务器架设篇 (第二版) MyBatis - MyBatis从入门到精通 - Spring+MVC+MyBatis企业应用实战 - MyBatis技术内幕 - 深入浅出MyBatis技术原理与实战 - Spring+MyBatis企业应用实战 Netty - Netty实战中文高清版 - Netty权威指南 第2版 带书签目录 完整版 - Netty进阶之路 跟着案例学Netty_完整版 Redis - Redis入门指南 第2版 - Redis实战 - Redis开发与运维-付磊 - Redis深度历险:核心原理和应用实践 - redis设计与实现 - 深入理解Redis Spring - Spring Security实战 - 陈木鑫 - Spring.2.0核心技术与最佳实践.廖雪峰.扫描版 - Spring从入门到精通 - Spring5高级编程 - Spring实战(第4版文字版) - Spring揭秘 - Spring源码深度解析 - spring高级程序设计 Spring Boot - Spring Boot 2+Thymeleaf企业应用实战 - Spring技术内幕:深入解析Spring架构与设计原理 - 精通spring - Mastering Spring - Spring Boot 2精髓(高清版) - Spring Boot企业级应用开发实战 - Spring Boot+Vue全栈开发实战 - Spring Boot开发实战 - SpringBoot揭秘+快速构建微服务体系 - 微服务实战:Dubbox+Spring Boot+Docker - 一步一步学Spring Boot 2微服务项目实战 - 微服务架构实战 基于Spring Boot Spring Cloud Docker - 微服务架构基础(Spring Boot+Spring Cloud+Docker) - 深入实践Spring Boot.陈韶健 Spring Cloud - Spring Cloud 微服务架构进阶 - Spring Cloud与Docker高并发微服务架构设计实施 - Spring Cloud与Docker微服务架构实战 - Spring Cloud微服务全栈技术与案例解析 - Spring Cloud微服务实战 - Spring Cloud微服务架构开发实战 - 疯狂Spring Cloud微服务架构实战 - 重新定义Spring Cloud实战 Zookeeper - Zookeeper 分布式过程 - 从Paxos到Zookeeper 分布式一致性原理与实践 其他 - tomcat内核设计剖析 - 大数据之路:阿里巴巴大数据实践 - Hadoop大数据分析与挖掘实战 - Git入门与实践完整版 - Hadoop权威指南(第2版) - 构建工具 - Maven实战 - 架构 - App后台开发运维和架构实践 - 亿级流量网站架构核心技术 - 数据结构和算法 - Docker全攻略 - Elasticsearch大数据搜索引擎 - Git版本控制管理第2版(美)罗力格 - Hadoop技术内幕 深入解析HADOOP COMMON和HDFS架构设计与实现原理 - Hadoop技术内幕+深入理解MapReduce架构设计与实现原理 - Hadoop技术内幕深入解析YARN架构设计与实现原理 - 大话数据结构 - 算法导论 - Git权威指南-目录完美-完整版 - 大话设计模式 - 设计模式 - 大厂笔试真题+答案 - 人件(高清中英文合并版) - 代码整洁之道 - 多处理器编程的艺术 - 程序开发心理学(银年纪念版) - 计算机程序设计艺术(第一卷)高清中文版 - 编程之美-完整版 - 计算机程序设计艺术(第三卷)高清中文版 - 计算机程序设计艺术(第二卷)高清中文版