【绝地求生源码视频】【php自带源码加密】【分析源码框架工具】cmake opencv 源码
1.一次搞定OpenCV源码及扩展模块的编译与环境配置
2.CMake编译Opencv(VS2022)
3.OpenCV在MacOS上源码编译OpenCV
4.windows下用cmake构建opencv项目
5.Cmake安装和生成opencv的解决方法
6.在Ubuntu使用cmake-gui编译Opencv+Opencv_contib+CUDA11.3
一次搞定OpenCV源码及扩展模块的编译与环境配置
版本:VS、CMake3..3、OpenCV3.4.7
在安装OpenCV的过程中,环境配置和扩展模块的编译往往给新手们带来困扰。本文旨在帮助新手们一次性解决OpenCV的安装和扩展模块编译问题。
原文:一次搞定OpenCV源码及扩展模块的绝地求生源码视频编译与环境配置
更多相关内容,请关注公众号「3DCV」,获取工业3D视觉、自动驾驶、SLAM、三维重建、最新最前沿论文和科技动态。推荐阅读:
1、 工业3D视觉、自动驾驶、SLAM、三维重建、无人机等方向学习路线汇总!
2、 基于NeRF/Gaussian的全新SLAM算法
3、 面向自动驾驶的BEV与Occupancy网络全景解析与实战
4、 基于面结构光的高反射物体重建方法(相位偏折术)
CMake编译Opencv(VS)
已经成功利用CMake编译了OpenCV 4.7.0,适用于Visual Studio 。以前的版本可能会与VS存在兼容性问题,但现在的情况得到了改善。本文旨在分享一个实用的教程,解决国内用户在编译OpenCV过程中遇到的下载速度慢和设置问题,尤其是针对CUDA和CUDNN的安装。
以下是所需软件及版本:CMake 3..3、Visual Studio 、OpenCV 4.7.0、OpenCV-Contrib 4.7.0,以及CUDA .1.0_.和cudnn-windows-x_-8.8.1.3。php自带源码加密下载链接可在提供的软件工具传送门中找到,如CMake官网和OpenCV下载页面。
安装步骤相对简单,只需确认安装选项并配置环境变量。OpenCV-Contrib包含一些商业功能,根据需求选择编译或直接下载预编译版本。注意确保OpenCV和OpenCV-Contrib版本匹配。
编译前需要安装Visual Studio 社区版和CUDA/CUDNN,注意两者版本要对应。安装过程中,可能需要注册Nvidia账号并开通开发者权限,尽管过程可能繁琐,但耐心等待即可。
编译过程中遇到下载问题,可通过修改链接和使用迅雷等工具解决。将OpenCV和opencv-contrib解压到opencvbuild目录,使用CMake配置编译选项,如BUILD_opencv_world、OPENCV_DNN_CUDA等。遇到错误时,参考相关博主的解决方案,如检查CMakeDownloadLog.txt文件,下载缺失的库文件。
最终,通过调试设置、添加包含和库目录,以及配置环境变量,即可验证OpenCV的正确编译和链接。对于新手开发者,推荐阅读相关深度学习教程以深入了解CUDA+CUDNN的安装。
文章最后,通过创建一个C++控制台项目,分析源码框架工具展示了如何将编译后的库文件和环境变量配置到项目中,以实现OpenCV功能的使用。
OpenCV在MacOS上源码编译OpenCV
MacOS上OpenCV源码编译与使用教程
在视觉任务中,开源库OpenCV经常被用到,它支持多种语言接口,适用于多平台。在MacOS上直接安装包不可用时,我们需要自行编译。本文将指导您从opencv_4.8.0和opencv_contrib_4.8.0版本入手,详细展示源码编译与配置过程。1. 下载源码并解压
首先,从官网下载对应版本(4.8.0)的源码,确保opencv与opencv_contrib的版本一致。通过命令行进行下载,解压后放置于工作目录。2. 准备CMake
OpenCV支持CMake编译,需要先安装。创建编译文件夹,然后使用CMake指令配置编译环境,注意指定opencv和opencv_contrib的路径。3. CMake编译与下载依赖
完成CMake配置后,进行make编译,注意网络通畅以确保第三方库的下载。编译成功后,会生成所需文件。4. 安装与案例测试
执行make install,安装OpenCV到指定路径。接着,创建一个C++文件main.cpp,编写简单代码以读取并展示,通过CMakeLists.txt文件配置编译路径。5. VS Code环境测试
在VS Code中,陈依涵源码通过CMakeLists.txt配置并编译main.cpp,确认OpenCV库路径正确,运行程序,成功处理。总结
通过上述步骤,您已在MacOS上成功源码编译并配置了OpenCV,实现了处理功能。在实际项目中,这将为您提供灵活的环境和更好的控制。windows下用cmake构建opencv项目
为了在Windows环境下使用CMake构建OpenCV项目,您需要准备几个必要的工具和资源。
首先,确保您已安装Visual Studio ,并下载最新版本的CMake构建工具。
接着,从Releases - OpenCV页面下载OpenCV源码,选择4.6.0版本。同时,访问github.com下载额外模块opencv_contrib。
利用CMake构建工程时,选择源文件路径和构建路径,配置构建工具,点击“Configure”进行设置。构建过程中如出现错误,可忽略继续进行。配置完成后,勾选生成动态库选项,并添加opencv_contrib额外库路径。
完成配置后,再次点击“Configure”进行重新配置,直至选项框中不再出现标红选项。点击“generate”生成工程。换手比指标源码成功后,可打开Visual Studio进行编译。
在VS中,利用CMake构建的工程编译OpenCV源文件。打开输出文件夹中的CMakeTargets文件夹,选择ALL_BUILD进行生成。在编译过程中如出现错误,删除日文注释后再次生成。配置解决方案为Release,重复生成步骤,将生成对象改为同一文件夹下的INSTALL。
为了配置环境变量,将build文件夹下的bin文件夹加入系统环境变量,新建变量OpenCV_DIR,值为\build\install\x\vc\lib。将build/install/include/x/vc/bin文件夹下的两个文件复制到C:\Windows\System路径下。
完成环境配置后,即可测试环境是否已成功设置。通过源代码、CMakeList.txt文件和程序运行结果验证环境配置。
在配置过程中,可能会遇到关于CMake Warning at cmake/OpenCVDownload.cmake: (message): FFMPEG: Download下载失败的问题,可参考相关博文进行解决。
Cmake安装和生成opencv的解决方法
Cmake安装步骤:首先,访问Cmake的官方下载页面,根据你的操作系统(如Windows-x_)选择适合的版本进行下载。
下载完成后,将Cmake安装到任意位置,具体步骤这里不再赘述。
运行和生成OpenCV解决方案: 在安装目录的C:\cmake-3..0-windows-x_\bin下,找到并运行cmake-gui.exe。在界面中,点击"where is the source code"右侧的浏览按钮,定位到OpenCV源代码文件夹,通常是F:\opencv\sources。 接着,选择"browse build",指定解决方案生成的路径。点击"configure"进行第一次配置,选择你的编译IDE。如果配置无误,点击"finish",配置完成后进入下一步。 注意,如果路径包含中文字符,可能会出现警告,应避免这种情况。配置完成后,再次点击"configure",默认设置即可,无需额外勾选或取消。 完成第二次配置后,点击"generate",等待"generating done"的提示,表示解决方案生成完成。此时,在之前指定的生成路径下,你会找到opencv.sln文件。 打开解决方案资源管理器,你可以根据自己的需求选择和学习源代码。初次编译可能会出现错误,这是正常现象,因为ALL_BUILD默认为启动项,但不是可以直接执行的。只需在解决方案资源管理器中更改启动项目,问题即可解决。 至此,Cmake生成OpenCV解决方案的全过程已顺利结束。在Ubuntu使用cmake-gui编译Opencv+Opencv_contib+CUDA.3
在Ubuntu上使用cmake-gui编译Opencv、Opencv_contrib和CUDA .3的步骤如下:
首先,下载Opencv 4.8.0和Opencv_contrib 4.8.0。
接着,为CUDA .3选择合适的cuDNN版本(例如8.6),并在Ubuntu上进行解压。然后将cuDNN文件复制到cuda目录,确保路径正确。验证cuDNN安装是否成功。
打开终端,启动cmake-gui。选择你想要编译的Opencv目录,然后点击Configure。选择Unix Makefiles,接着点击Finish。在配置选项中,勾选OPENCV_ENABLE_NONFREE、ENABLE_FAST_MATH,以及与CUDA相关的选项,如BUILD_CUDA_STATUS、OPENCV_DNN_CUDA和WITH_CUDA。
别忘了设置OPENCV_EXTRA_MODULES_PATH,指向contrib模块文件夹。如果遇到ippicv未下载的问题,需手动下载并替换.cache中的文件。在配置过程中,可能还需添加CUDA_FAST_MATH,并设置CMAKE_INSTALL_PREFIX为库的安装路径。
点击Configure后,生成构建文件。进入build文件夹,使用make命令开始编译,这个过程可能需要一段时间。编译完成后,执行make install,安装库文件。
安装完成后,你将在设置的CMAKE_INSTALL_PREFIX目录中找到include和lib文件夹。如果在此过程中遇到错误,记得检查与你所使用的版本是否兼容。
总的来说,这个过程涉及下载、配置、编译和安装,确保每一步都按照上述指导进行,才能顺利编译并使用Opencv、Opencv_contrib和CUDA .3。
win cmake源码编译安装opencv(c++,qt)(解决ffmpeg下载失败导致opencv无法处理视频)
要使用Qt与Windows上的OpenCV,当默认的msvc版本不满足需求时,需要通过源码编译安装,并配合cmake工具。以下是详细的步骤:
首先,下载OpenCV sources版本,同时确保已经安装了cmake编译工具,这里推荐选择对应版本的MinGW版本。在Qt的mingw环境中,需将mingw的bin路径(例如:D:\Programs\Qt\Qt5..\Tools\mingw_\bin)添加到环境变量,验证配置成功可通过在cmd中输入gcc -v。
解压OpenCV到指定位置,创建一个build文件夹。使用cmake-gui,设置源码路径和build文件夹,配置为MinGW Makefiles。初次配置可能遇到问题,如ffmpeg下载失败,这时需要重命名ffmpeg.cmake为ffmpeg.txt,修改其中的下载地址为/。
在cmake-gui中,勾选with_qt和with_opengl,取消opencv_enable_allocator_stats和与python相关的选项。如果需要python支持,可以使用pip安装。配置完成后,再次点击configure并生成makefile,确保所有路径正确。
在build文件夹中,通过mingw-make -j(根据你的CPU核心数设置线程数,例如)开始编译,最后执行mingw-make install。安装后,别忘了将安装路径(如D:\Programs\opencv3.4.\build\install\x\mingw\bin)添加到系统环境变量。
通过这些步骤,你就可以在Qt环境中成功安装并使用OpenCV处理视频了,无需担心ffmpeg下载失败的问题。
编程工具篇编译OpenCV+opencv_contrib
在进行Unity:从零开始搞AR教程时,我们需要集成ArUco功能,这就需要将opencv_contrib模块与opencv进行编译。以下是详细的编译步骤: 首先,访问CMake官网下载最新版本(如cmake-3..0-rc1-windows-x_.msi)并安装。 然后,去GitHub下载OpenCV(选择4.5.3版本)和opencv_contrib的源码,链接分别为:opencv-4.5.3-vc_vc.exe
Source code (zip)
下载后解压OpenCV和opencv_contrib的源码包。 接下来,使用CMake进行编译。在CMake的配置过程中,选择Visual Studio (根据你的系统调整),配置路径为opencv源代码目录和你想要生成二进制文件的位置。确保勾选"BUILD_opencv_world",并输入"OPENCV_EXTRA_MODULES_PATH"(如果有需要)。点击Configure,然后Generate,生成过程完成后进入build目录。 在build目录中,打开OpenCV.sln文件,选择“批生成”,勾选"ALL_BUILD"和"INSTALL",最后点击生成。编译完成后,头文件和动态库会在Install文件夹中找到。 最后一步,如果你已经在Windows系统上配置过OpenCV环境(参阅编程工具篇),则无需重复,直接使用生成的环境变量即可。如果之前未配置,建议参考相关教程进行设置或更新。