1.caffeåvgg-16ågooglenetçåºå«
2.tensorflow和caffe哪个
3.全卷积网络:从图像级理解到像素级理解
caffeåvgg-16ågooglenetçåºå«
ä¸è é½å±äºæ·±åº¦å¦ä¹ é¢åçæ¯è¯ã
caffeæ¯ç®åå¨å¾åé¢ååºç¨æ为广æ³ç深度å¦ä¹ å¹³å°ï¼è®¸å¤å½å å¤ç大çé½ä½¿ç¨caffeå为å®éªå¹³å°ï¼ä¸»è¦åå 个人认为æ两个ï¼ä¸æ¯caffeåå±è¾æ©ï¼éçæ¶é´ç积累积èäºå¤§éç深度å¦ä¹ ç 究ææï¼ä¾å¦è½å¤ç´æ¥è¿è¡ç代ç å使ç¨é¢å è®ç»å¥½ç模åï¼å¯ä»¥å¾æ¹ä¾¿çè¿è¡å®éªï¼äºæ¯å人å¦ææ³ä¸ä¹åçæ¹æ³è¿è¡æ¯è¾ï¼å°±éè¦ä¿æé¤æ¹æ³å¤çå ¶å®å ç´ ä¸è´ï¼å¦æ使ç¨çæ°æ®ä»¥åå®éªä½¿ç¨çå¹³å°ã
vgg-æ¯ä¸ç§æ·±åº¦å·ç§¯ç¥ç»ç½ç»æ¨¡åï¼è¡¨ç¤ºå ¶æ·±åº¦ï¼æ¯alexnetåæ¯è¾æ代表æ§ç深度模åä¹ä¸ï¼å¨å¾ååç±»çä»»å¡ä¸åå¾äºä¸éçææ
googlenetæ¯google设计çä¸ç§æ·±åº¦å·ç§¯ç¥ç»ç½ç»æ¨¡åï¼ç¬¬ä¸ç深度å¯è³å±ï¼è¿ä¸ç½ç»é纳äºç¨çå¦ä¹ çææ³ï¼éè¿ç¨çç½ç»çåæ°æ¥å 大ç½ç»è§æ¨¡ã
类似caffeçå¹³å°è¿ætensorflow,卷积源卷积 theano, torch, paddleçç
类似vgg-ågooglenetè¿æ ·çç½ç»ç»ææ´æ¯å¤ç§å¤æ ·ï¼æ¯è¾æ代表æ§çå°±æ¯alexnet, resnet
tensorflow和caffe哪个
TensorFlow比Caffe更受欢迎和广泛使用。以下是实现关于TensorFlow和Caffe的
TensorFlow是一个开源深度学习框架,它支持分布式训练,卷积源卷积能够在多个硬件上运行,实现具有高度的卷积源卷积灵活性和可扩展性。由于其强大的实现黑悦源码计算能力和广泛的应用范围,TensorFlow成为许多研究者和开发者的卷积源卷积首选工具。此外,实现TensorFlow还提供了丰富的卷积源卷积API和文档,使得学习和使用变得更加容易。实现
相比之下,卷积源卷积Caffe也是实现一个广泛使用的深度学习框架,它侧重于卷积神经网络的卷积源卷积应用。Caffe在图像处理领域表现优秀,实现其结构清晰、卷积源卷积易于部署和调试。然而,相对于TensorFlow,Caffe的灵活性较低,学习和使用门槛较高。此外,git源码网随着深度学习技术的发展和应用领域的扩大,Caffe的更新和发展速度相对较慢。
因此,在当前的深度学习领域,TensorFlow由于其灵活性、可扩展性和广泛的应用范围而更受欢迎和广泛使用。不过,Caffe在特定的应用场景下仍然具有一定的优势。选择使用哪个框架取决于具体的应用场景和开发者的需求。
全卷积网络:从图像级理解到像素级理解
深度学习大讲堂致力于推送人工智能、皮皮商城源码深度学习方面的最新技术、产品以及活动。请关注我们的知乎专栏!
卷积神经网络(CNN):图像级语义理解的利器
自年AlexNet提出并刷新了当年ImageNet物体分类竞赛的世界纪录以来,CNN在物体分类、人脸识别、图像检索等方面取得了显著成就。通常CNN网络在卷积层之后会接上若干个全连接层,将卷积层产生的特征图映射成一个固定长度的特征向量。
以AlexNet为代表的源码改脚本经典CNN结构适合于图像级的分类和回归任务,因为它们最后都期望得到整个输入图像的一个数值描述。例如,下图中的猫,输入AlexNet,得到一个长为的输出向量,表示输入图像属于每一类的概率。
全卷积网络:从图像级理解到像素级理解
与图像级理解任务不同,全卷积网络(FCN)能够处理像素级别的分类结果,如语义级别图像分割和边缘检测。针对语义分割和边缘检测问题,相机源码原理全卷积网络能够接受任意尺寸的输入图像,采用反卷积层对最后一个卷积层的特征图进行上采样,使它恢复到输入图像相同的尺寸,从而可以对每个像素都产生一个预测。
FCN通过逐像素计算softmax分类的损失,相当于每一个像素对应一个训练样本,解决了传统方法在图像块大小和上下文信息建模上的不足。
下图是FCN用于语义分割的结构示意图,它在Alexnet基础上,通过1x1卷积层将channel=的特征图变为channel=的特征图,然后经过上采样和crop,变为与输入图像同样大小的channel=的特征图,实现像素级别的预测。
全卷积网络能够端到端得到每个像素的预测结果,适用于边缘检测等像素级任务。我们曾经在一个燃气表数字识别项目中使用FCN直接得到燃气表中的数字识别结果,省去了传统识别中复杂的逐patch计算过程。
HED: FCN用于边缘检测
FCN在边缘检测方面也有出色表现。HED提出了side-output的概念,在网络的中间卷积层也对其输出上采样得到与原图一样的map,并与ground-truth计算loss,这些中间的卷积层输出的map称为side-output。多个side-output产生的loss直接反向传导到对应的卷积层,避免了梯度消失,同时在不同的卷积层学到了不同尺度的特征。
我们进一步提出了“尺度相关的边输出”(scale-associated side-output)的概念,根据卷积层感受野的不同,给予不同的监督,使得最终的side-output具有尺度信息。在FSDS(fusing scale-associated deep side-output)方法中,我们首先将骨架点根据其尺度从小到大分为离散的五类,然后根据不同的side-output感受野的不同,使用不同的ground-truth去监督side-output。
在HED中,多个side-output的结果最后是平均累加的。在FSDS中,浅层side-output产生的小尺度骨架的置信度更高,而深层side-output产生的大尺度骨架置信度高,我们设计了带有权重的side-output融合策略,自动学到不同尺度分类结果的权重进行融合。
全卷积网络和基于FCN的方法在深度学习领域取得了广泛的应用,从图像级理解到像素级理解,它们为计算机视觉任务带来了革命性的变化。我们开源了基于Caffe的实现,欢迎关注和支持。