1.DenseNet源码解读(pytorch官方)
2.深度学习目标检测系列:一文弄懂YOLO算法|附Python源码
3.LayoutLM Code Guide
4.唇语识别源代码
5.基于YOLOv8的视觉视觉摔倒行为检测系统(Python源码+Pyqt6界面+数据集)
6.分享10篇最新NLP顶级论文,有研究竟提出:给大型语言模型(LLM)增加水印
DenseNet源码解读(pytorch官方)
DenseNet源码解析:一个基于PyTorch实现的训练训练深度密集连接网络模型,提供了一系列预训练模型选项。源码源码用首先,视觉视觉我们引入必要的训练训练库,如ReLU、源码源码用red node 源码分析卷积层、视觉视觉批量归一化和函数模块。训练训练DenseNet的源码源码用核心是通过`_bn_function_factory`函数拼接前一层的特征,然后通过一系列的视觉视觉卷积块进行特征提取,包括1x1卷积、训练训练ReLU激活和3x3卷积,源码源码用形成了密集层 `_DenseLayer`。视觉视觉该层可以设置内存高效模式以节省内存。训练训练在 `_DenseBlock` 中,源码源码用通过循环堆叠指定数量的密集层,并在每个块之间插入降采样层 `_Transition` 以控制通道数量的增长。模型类 `DenseNet` 建立了整套网络结构,包括初始卷积层、多个密集块、过渡层以及最终的全局平均池化和全连接层。提供了针对不同配置(如densenet、densenet等)的预训练模型加载方法 `_densenet`,用户可以根据需求选择并加载预训练权重。
每个模型函数,如`densenet`,接受参数如预训练状态、进度条显示等,允许用户根据需要定制网络行为。总的来说,DenseNet的设计旨在通过密集连接和递增特征组合来提升模型性能,适用于图像识别等计算机视觉任务。
深度学习目标检测系列:一文弄懂YOLO算法|附Python源码
深度学习目标检测系列:一文掌握YOLO算法 YOLO算法是计算机视觉领域的一种端到端目标检测方法,其独特之处在于其高效性和简易性。相较于RCNN系列,YOLO直接处理整个图像,焦作房产源码预测每个位置的边界框和类别概率,速度极快,每秒可处理帧。以下是YOLO算法的主要特点和工作流程概述: 1. 训练过程:将标记数据传递给模型,通过CNN构建模型,并以3X3网格为例,每个单元格对应一个8维标签,表示网格中是否存在对象、对象类别以及边界框的相对坐标。 2. 边界框编码:YOLO预测的边界框是相对于网格单元的,通过计算对象中心与网格的相对坐标,以及边界框与网格尺寸的比例来表示。 3. 非极大值抑制:通过计算IoU来判断预测边界框的质量,大于阈值(如0.5)的框被认为是好的预测。非极大值抑制用于消除重复检测,确保每个对象只被检测一次。 4. Anchor Boxes:对于多对象网格,使用Anchor Boxes预先定义不同的边界框形状,以便于多对象检测。 5. 模型应用:训练时,输入是图像和标签,输出是每个网格的预测边界框。测试时,模型预测并应用非极大值抑制,最终输出对象的单个预测结果。 如果你想深入了解并实践YOLO算法,可以参考Andrew NG的GitHub代码,那里有Python实现的示例。通过实验和调整,你将体验到YOLO在目标检测任务中的强大功能。LayoutLM Code Guide
LayoutLM
LayoutLM为一个视觉文档多任务通用的预训练模型,本文将对其开源实现代码进行详细解析,介绍其目录结构、重要组件和运行步骤。
在微软开源工作总仓库unilm下,CR社源码将layoutlm进行clone操作。由于layoutlm已作为第一版本弃用,其微调样例和主模型代码被额外一层deprecated目录包裹。
本文将以下游任务Funsd为例,具体展示layoutlm在微调过程中的相关代码。
分布式训练与代码解析
首先,通过阅读preprocess.sh脚本,了解其功能为下载数据集、调用preprocess.py预处理数据集并整理标签。
在preprocess.py中,数据集被从原始格式转换为模型可处理和学习的格式,以供Dataset加载。为熟悉Funsd数据集内容与格式,需要先了解其原始信息。
Funsd数据集结构包括data目录下训练集与测试集,分别包含images与annotations两个子目录。训练集包含个样本,测试集包含个样本。数据集标记详细,以文本块为单位,包括文本框、文本、标签、词集合与关系等信息。
目标格式转换完成后,将所有样本处理结果集中于一个文件中,每个样本间以空行间隔,形成符合要求的正式txt文件。通过diff命令可得知,文本文件总行数在temp行后插入一个空行,最终共有行。同时,对于test数据集,tmp文件为行,txt文件为行。蹦迪源码替换
在preprocess.py中,主要逻辑涉及convert与seg函数的作用,具体在源码中有注释说明。此步骤完成后,数据处理完毕,可通过run_seq_labeling.py代码进行微调训练。
main方法启动微调过程,程序注释中详细解释了主要步骤。程序包含以下关键方法,涉及单机多卡训练的实现,需要在阅读源码时注意参数local_rank、model构建与ngpu的值。
在layoutlm.py中,定义了基础模型的相关类,包括LayoutlmConfig、LayoutlmEmbeddings、LayoutlmModel与LayoutlmForSequenceClassification等。
相比于BertConfig,LayoutlmConfig添加了max_2d_position_embeddings参数,用于指定布局嵌入的维度。在LayoutlmEmbeddings类中,包括词嵌入、位置嵌入与段嵌入等,最终所有embedding通过加法连接。
LayoutlmModel类继承自BertModel,初始化包含主要的layoutlm模型与分类预测头。前向传播的主要代码对输入进行推理,进行分类预测,最后计算损失,根据标签数量采用MSE或交叉熵损失。
通过模型在bert基础上的扩展与优化,LayoutLM实现了对视觉文档多任务的高效处理能力。理解其代码实现时,参考hugging face中bert的实现代码,有助于更深入地理解layoutlm的网人门户源码架构与功能。
唇语识别源代码
唇语识别源代码的实现是一个相对复杂的过程,它涉及到计算机视觉、深度学习和自然语言处理等多个领域。下面我将详细解释唇语识别源代码的关键组成部分及其工作原理。 核心技术与模型 唇语识别的核心技术在于从视频中提取出说话者的口型变化,并将其映射到相应的文字或音素上。这通常通过深度学习模型来实现,如卷积神经网络(CNN)用于提取口型特征,循环神经网络(RNN)或Transformer模型用于处理时序信息并生成文本输出。这些模型需要大量的标记数据进行训练,以学习从口型到文本的映射关系。 数据预处理与特征提取 在源代码中,数据预处理是一个关键步骤。它包括对输入视频的预处理,如裁剪口型区域、归一化尺寸和颜色等,以减少背景和其他因素的干扰。接下来,通过特征提取技术,如使用CNN来捕捉口型的形状、纹理和动态变化,将这些特征转换为模型可以理解的数值形式。 模型训练与优化 模型训练是唇语识别源代码中的另一重要环节。通过使用大量的唇语视频和对应的文本数据,模型能够学习如何根据口型变化预测出正确的文本。训练过程中,需要选择合适的损失函数和优化算法,以确保模型能够准确、高效地学习。此外,为了防止过拟合,还可以采用正则化技术,如dropout和权重衰减。 推理与后处理 在模型训练完成后,就可以将其用于实际的唇语识别任务中。推理阶段包括接收新的唇语视频输入,通过模型生成对应的文本预测。为了提高识别的准确性,还可以进行后处理操作,如使用语言模型对生成的文本进行校正,或者结合音频信息(如果可用)来进一步提升识别效果。 总的来说,唇语识别源代码的实现是一个多步骤、跨学科的工程,它要求深入理解计算机视觉、深度学习和自然语言处理等领域的知识。通过精心设计和优化各个环节,我们可以开发出高效、准确的唇语识别系统,为语音识别在噪音环境或静音场景下的应用提供有力支持。基于YOLOv8的摔倒行为检测系统(Python源码+Pyqt6界面+数据集)
本文主要内容:实战基于YOLOv8的摔倒行为检测算法,从数据集制作到模型训练,再到设计成检测UI界面。
人体行为分析AI算法是一种利用人工智能技术对人体行为进行检测、跟踪和分析的方法,通过计算机视觉、深度学习和模式识别等技术,实现人体姿态、动作和行为的自动化识别与分析。人员摔倒检测算法技术原理重要且具有广泛应用前景,随着人工智能和计算机视觉的发展,其研究领域日益热门。这项技术基于计算机视觉和模式识别原理,通过图像和视频分析识别人员摔倒情况。
本文利用YOLOv8技术进行人员摔倒行为检测。
YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型最新版本。它在先前YOLO成功基础上引入新功能和改进,提升性能和灵活性。YOLOv8可以在大型数据集上训练,并在CPU到GPU各种硬件平台上运行。
摔倒行为检测涉及数据集制作、模型训练与结果可视化。数据集大小为张,按照7:2:1的比例随机划分为训练、验证和测试集。训练结果包括混淆矩阵、标签图、PR曲线和结果可视化。
设计摔倒行为检测系统采用PySide6 GUI框架。PySide6是Qt公司开发的图形用户界面(GUI)框架,基于Python语言,支持LGPL协议。PySide6对应的Qt版本为Qt6。
开发GUI程序包含基本步骤:安装PySide6、设计用户界面和集成AI算法。通过这些步骤,将AI算法打包提供给用户使用。
基于PySide6的摔倒行为检测系统设计,实现了从数据处理、模型训练到结果展示的全流程自动化,为用户提供易于操作的界面,实现对人员摔倒行为的实时检测与分析。
分享篇最新NLP顶级论文,有研究竟提出:给大型语言模型(LLM)增加水印
新整理的最新论文又又来了,今天继续分享十篇今年最新NLP顶级论文,其中主要包括模型水印添加、状态空间模型在语言建模中的应用、指令元学习、大型模型训练效率提升、大模型到小模型推理能力转移、大模型简化、对话模型合规检测等。
模型添加水印:
大型语言模型 (LLM) 如 ChatGPT 可以编写文档、创建可执行代码和回答问题,通常具有类似人类的能力。然而,这些系统被用于恶意目的的风险也越来越大,因此检测和审核机器生成文本的使用能力变得关键。本文提出了「一个为专有语言模型加水印的框架」,以减轻潜在的危害。该水印对于人类是不可见,但可以通过算法检测的方式嵌入到生成的文本中,对文本质量的影响可以忽略不计,并且可以在不访问模型 API 或参数的情况下使用开源算法进行检测。
状态空间模型:
本文研究了「状态空间模型(SSM)在语言建模中的应用」,并将其性能与基于Attention的模型进行比较。作者发现,SSM在回调序列较早的Token以及在整个序列中做Token对比的时候存在困难。为解决这两个问题,他们提出了一种新的SSM层,称为H3,其在语言合成上与Attention模型相匹配,并接近于Transformer在OpenWebText上的性能。他们还提出了一种名为FlashConv的方法,提高了SSM在当前硬件上的训练效率,同时也让它们可以扩展到更长的序列。
指令元学习:
本文提出了一个「应用于指令元学习(instruction meta-learning)的大型基准」,该基准将8个现有基准的任务类别合并,总计包含了个自然语言处理(NLP)任务。作者评估了不同决策对性能的影响,例如:指令调整基准的规模和多样性、不同任务采样策略、有无示范的微调、使用特定数据集对推理和对话进行训练以及微调目标等。他们使用该基准来训练两个经过指令调指OPT的版本(为OPT-IML B和OPT-IML B),结果显示,这两个版本在四个不同的评估基准上表现出更好的泛化能力,优于普通的OPT模型。
训练效率提升:
本文提出了「一种名为 Cuation in Training (CiT) 的方法,旨在提高大型视觉语言模型的训练效率」,以方便更多机构的进行使用。CiT 自动选择高质量的训练数据来加速对比图文训练,并且不需要离线数据过滤管道,从而允许更广泛的数据源。该算法由两个循环组成:一个管理训练数据的外循环和一个使用管理的训练数据的内循环,这两个循环由文本编码器进行连接。 CiT 将元数据用于感兴趣的任务,例如类名和大量图像文本对,通过测量文本嵌入和元数据嵌入的相似性来选择相关的训练数据。实验表明,「CiT 可以显着加快训练速度,尤其是当原始数据量很大时」。
从大模型到小模型:
本文探索了「一种通过知识蒸馏将推理能力从大型语言模型转移到小型模型的方法」。作者指出,利用较大的“教师”模型的输出微调较小的“学生”模型可以提高一系列推理任务的性能,例如算术、常识和符号推理。论文中的实验表明,这种方法可以显着提高任务性能,例如,当在 PaLM-B 生成的思维链上进行微调时,将名为 GSM8K 的数据集上的较小模型的准确性从 8.% 提高到 .%。本文探索了「一种通过微调将推理能力从大型语言模型转移到较小模型的方法」并提出了“Fine-tune-CoT”,这是一种利用超大型语言模型(例如 GPT-3)的能力来生成推理样本并教授较小模型的方法。
大模型简化:
本文提出了「一种名为 SparseGPT 的新型模型简化方法」,它能够将大型生成预训练 Transformer (GPT) 模型中的权重数量至少减少%,并且无需进行任何再训练,并且精度损失最小。作者通过将 SparseGPT 应用于最大的开源模型 OPT-B 和 BLOOM-B ,在几乎没有增加复杂度的情况下,模型权重数量减少了 % 。该方法不仅还与权重量化方法兼容,并且可以推广到其他模式。
模型压缩对并行性的影响:
针对大规模Transformer 模型,本文「研究了不同模型压缩方法对模型并行性的有效性」。作者在当前主要流行的 Transformer 训练框架上使用三种类型的压缩算法进行了实证研究:基于修剪的、基于学习的和基于量化的。在 多个设置和 8 个流行数据集上评估这些方法,同时考虑了不同的超参数、硬件以及微调和预训练阶段。该论文提供了模型并行性和数据并行性之间差异的见解,并为模型并行性压缩算法的未来发展提供了建议。
对话模型合规发布判定:
本文工作「为从业者提供了一个框架,来判定end-to-end神经对话Agent的发布是否合规」。作者出发点是:对话式 AI 领域的最新进展以及从互联网上发布的基于大型数据集训练的模型可能产生的潜在危害。他们调查了最近的相关研究,强调了价值观、潜在的积极影响和潜在的危害之间的紧张关系。他们提出了一个基于价值敏感设计原则的框架,以帮助从业者权衡利弊,并就这些模型的发布做出符合规范的决策。
推荐阅读:
- [1] NLP自然语言处理:生成式人工智能(Generative AI)是 “未来” 还是 “现在” ?
- [2] 「自然语言处理(NLP)」 你必须要知道的 “ 十二个国际顶级会议 ” !
- [3] 年!自然语言处理 大预训练模型
- [4] NLP自然语言处理:分享 8 篇NLP论文,有研究惊奇发现:大语言模型除了学习语言还学到了... ...
- [5] 超详细!一文看懂从逻辑回归(Logistic)到神经网络(NN)
- [6] 北大 |一种细粒度的两阶段训练框架(FiTs)(开放源码)
- [7] NLP自然语言处理:NLP不断突破界限, 十篇必读的顶级NLP论文!
- [8] 颠覆传统神经网络!个神经元驾驶一辆车!