1.Element 2 组件源码剖析之 Layout (栅格化)布局系统
2.深度学习目标检测系列:一文弄懂YOLO算法|附Python源码
3.pythoni代ç (pythonç代ç )
4.游戏引擎随笔 0x20:UE5 Nanite 源码解析之渲染篇:BVH 与 Cluster 的源码 Culling
Element 2 组件源码剖析之 Layout (栅格化)布局系统
深入剖析 Element 2 组件中的栅格化布局系统,此系统通过基础的边界分栏,为开发者提供快速简便的源码布局解决方案。本文将带你探索栅格系统如何通过行(row)与列(col)组件实现布局的边界灵活性与高效性。我们关注的源码是如何创建一致、规范、边界苍强简谱源码简洁的源码网页布局,提升用户体验。边界
网页栅格化布局是源码提升页面设计与开发效率的关键工具,它让页面布局更加统一且易于复用。边界Grid.Guide、源码Bootstrap 等工具提供了灵活的边界栅格系统,允许开发者自定义最大宽度、源码列数及边界,边界以生成优化的源码栅格方案。Element 2 则借鉴 Ant Design 的源码免费测试软件下载理念,采用栅格系统基础上的等分原则,以应对设计区域内的大量信息收纳需求。
栅格化布局系统的核心在于行(row)与列(col)组件。组件行(row)作为列(col)的容器,通过渲染函数构建,支持自定义HTML标签渲染,允许开发者根据需要灵活定制布局结构。列(col)组件则通过渲染函数构建,提供丰富的配置选项,包括间距、对齐方式等,以满足不同布局需求。
行(row)组件支持通过属性动态调整样式与自定义标签,如gutter属性用于设置栅格间隔,type属性可选择使用Flex布局以实现更灵活的js数字炸弹代码源码布局模式。justify与align属性分别控制Flex布局下的水平与垂直对齐方式,提供多种排列选项。此外,组件还通过计算属性计算样式,以抵消列(col)组件的内边距,确保布局的精确性。
列(col)组件则通过渲染函数构建,支持自定义标签渲染,同时包含多个配置属性,如span用于指定列的宽度,gutter属性获取父组件row的间距设置,并根据此计算自己的内边距。组件还动态计算样式,以实现栅格、间隔、趋势突破选股源码左右偏移的灵活调整。响应式布局特性使组件能够在不同屏幕尺寸下自动调整布局,提供适应性设计。
通过组件的渲染函数与属性配置,Element 2 的栅格化布局系统实现了一种高效、灵活且可扩展的布局解决方案,为开发者提供了强大的工具来构建响应式、美观且功能丰富的网页布局。
深度学习目标检测系列:一文弄懂YOLO算法|附Python源码
深度学习目标检测系列:一文掌握YOLO算法 YOLO算法是计算机视觉领域的一种端到端目标检测方法,其独特之处在于其高效性和简易性。相较于RCNN系列,YOLO直接处理整个图像,预测每个位置的边界框和类别概率,速度极快,每秒可处理帧。袁博选股源码以下是YOLO算法的主要特点和工作流程概述: 1. 训练过程:将标记数据传递给模型,通过CNN构建模型,并以3X3网格为例,每个单元格对应一个8维标签,表示网格中是否存在对象、对象类别以及边界框的相对坐标。 2. 边界框编码:YOLO预测的边界框是相对于网格单元的,通过计算对象中心与网格的相对坐标,以及边界框与网格尺寸的比例来表示。 3. 非极大值抑制:通过计算IoU来判断预测边界框的质量,大于阈值(如0.5)的框被认为是好的预测。非极大值抑制用于消除重复检测,确保每个对象只被检测一次。 4. Anchor Boxes:对于多对象网格,使用Anchor Boxes预先定义不同的边界框形状,以便于多对象检测。 5. 模型应用:训练时,输入是图像和标签,输出是每个网格的预测边界框。测试时,模型预测并应用非极大值抑制,最终输出对象的单个预测结果。 如果你想深入了解并实践YOLO算法,可以参考Andrew NG的GitHub代码,那里有Python实现的示例。通过实验和调整,你将体验到YOLO在目标检测任务中的强大功能。pythoni代ç (pythonç代ç )
pythonåºç¡ä»£ç æ¯ä»ä¹?
pythonå ¥é¨ä»£ç æ¯ï¼
defnot_emptyï¼sï¼ï¼
returnsandlenï¼sãstripï¼ï¼ï¼0
#returnsandsãstripï¼ï¼
#å¦æç´æ¥ååsãstripï¼ï¼é£ä¹så¦ææ¯Noneï¼ä¼æ¥éï¼å 为None没æstripæ¹æ³ã
#å¦æsæ¯Noneï¼é£ä¹Noneandä»»ä½å¼é½æ¯Falseï¼ç´æ¥è¿åfalse
#å¦æséNoneï¼é£ä¹å¤å®sãtripï¼ï¼æ¯å¦ä¸ºç©ºã
è¿æ ·åfilterè½è¿æ»¤å°Noneï¼""ï¼""è¿æ ·çå¼ã
åæ两é¨åçã第ä¸é¨åæ¯å¯¹é¿åº¦è¿è¡åºåãç¸å½äºå°±æ¯range(5)ä»çç»æå°±æ¯ãã第äºé¨åå°±æ¯å ·ä½çæåºè§åãæåºè§åæ¯ç¨numsçå¼è¿è¡æåºï¼reverse没ç³æå°±æ¯é»è®¤ååºãå°±æ¯ç¨nums(0å°4)çå¼è¿è¡æåºï¼æ ¹æ®è¿ä¸ªç»æè¿åçä¸ä¸ªrange(5)çæ°ç»ã
åºæ¬è¯æ³ï¼
Pythonç设计ç®æ ä¹ä¸æ¯è®©ä»£ç å ·å¤é«åº¦çå¯é 读æ§ãå®è®¾è®¡æ¶å°½é使ç¨å ¶å®è¯è¨ç»å¸¸ä½¿ç¨çæ ç¹ç¬¦å·åè±æååï¼è®©ä»£ç çèµ·æ¥æ´æ´ç¾è§ãå®ä¸åå ¶ä»çéæè¯è¨å¦CãPascalé£æ ·éè¦éå¤ä¹¦å声æè¯å¥ï¼ä¹ä¸åå®ä»¬çè¯æ³é£æ ·ç»å¸¸æç¹æ®æ åµåæå¤ã
python代ç æä¹åï¼python3.6代ç ï¼
cnt=0
whileTrue:
print("请è¾å ¥åæ°ï¼")
i=input()
if(noti):
print("è¾å ¥æ误ï¼")
print("å¦ç人æ°ï¼"+str(cnt))
inti;
min=max=score[0];
avg=0;
for(i=0;in;i++)
baiavg+=score[i];
if(score[i]max)?
è§èç代ç ï¼
Pythonéç¨å¼ºå¶ç¼©è¿çæ¹å¼ä½¿å¾ä»£ç å ·æè¾å¥½å¯è¯»æ§ãèPythonè¯è¨åçç¨åºä¸éè¦ç¼è¯æäºè¿å¶ä»£ç ãPythonçä½è 设计éå¶æ§å¾å¼ºçè¯æ³ï¼ä½¿å¾ä¸å¥½çç¼ç¨ä¹ æ¯ï¼ä¾å¦ifè¯å¥çä¸ä¸è¡ä¸åå³ç¼©è¿ï¼é½ä¸è½éè¿ç¼è¯ãå ¶ä¸å¾éè¦çä¸é¡¹å°±æ¯Pythonç缩è¿è§åã
ä¸ä¸ªåå ¶ä»å¤§å¤æ°è¯è¨ï¼å¦Cï¼çåºå«å°±æ¯ï¼ä¸ä¸ªæ¨¡åççéï¼å®å ¨æ¯ç±æ¯è¡çé¦å符å¨è¿ä¸è¡çä½ç½®æ¥å³å®ï¼èCè¯è¨æ¯ç¨ä¸å¯¹è±æ¬å·{ }æ¥æç¡®çå®åºæ¨¡åçè¾¹çï¼ä¸å符çä½ç½®æ¯«æ å ³ç³»ï¼ã
6个å¼å¾ç©å³çPython代ç å éåäº6个èªå·±è®¤ä¸ºå¼å¾ç©å³çpython代ç ï¼å¸æ对æ£å¨å¦ä¹ pythonçä½ ææ帮å©ã
1ãç±»æ两个æ¹æ³ï¼ä¸ä¸ªæ¯new,ä¸ä¸ªæ¯init,æä»ä¹åºå«ï¼åªä¸ªä¼å æ§è¡å¢ï¼
è¿è¡ç»æå¦ä¸ï¼
åæ¥çå¦ä¸ä¸ªä¾å
è¿è¡ç»æå¦ä¸ï¼
è¿éç»åºå®æ¹ç解éï¼initä½ç¨æ¯ç±»å®ä¾è¿è¡åå§åï¼ç¬¬ä¸ä¸ªåæ°ä¸ºselfï¼ä»£è¡¨å¯¹è±¡æ¬èº«ï¼å¯ä»¥æ²¡æè¿åå¼ãnewåæ¯è¿åä¸ä¸ªæ°çç±»çå®ä¾ï¼ç¬¬ä¸ä¸ªåæ°æ¯cls代表该类æ¬èº«ï¼å¿ é¡»æè¿åå¼ãå¾ææ¾ï¼ç±»å å®ä¾åæè½äº§è½å¯¹è±¡ï¼æ¾ç¶æ¯newå æ§è¡ï¼ç¶ååinitï¼å®é ä¸ï¼åªè¦newè¿åçæ¯ç±»æ¬èº«çå®ä¾ï¼å®ä¼èªå¨è°ç¨initè¿è¡åå§åãä½æ¯æä¾å¤ï¼å¦ænewè¿åçæ¯å ¶ä»ç±»çå®ä¾ï¼åå®ä¸ä¼è°ç¨å½åç±»çinitãä¸é¢æ们åå«è¾åºä¸å¯¹è±¡aå对象bçç±»åï¼
å¯ä»¥çåºï¼aæ¯testç±»çä¸ä¸ªå¯¹è±¡ï¼èbå°±æ¯objectç对象ã
2ãmapå½æ°è¿åç对象
mapï¼ï¼å½æ°ç¬¬ä¸ä¸ªåæ°æ¯funï¼ç¬¬äºä¸ªåæ°æ¯ä¸è¬æ¯listï¼ç¬¬ä¸ä¸ªåæ°å¯ä»¥ålistï¼ä¹å¯ä»¥ä¸åï¼ä½ç¨å°±æ¯å¯¹å表ä¸listçæ¯ä¸ªå ç´ é¡ºåºè°ç¨å½æ°funã
æ没æåç°ï¼ç¬¬äºæ¬¡è¾åºbä¸çå ç´ æ¶ï¼åç°åæ空äºãåå æ¯map()å½æ°è¿åçæ¯ä¸ä¸ªè¿ä»£å¨ï¼å¹¶ç¨å¯¹è¿åç»æ使ç¨äºyieldï¼è¿æ ·åçç®çå¨äºèçå åã举个ä¾åï¼
æ§è¡ç»æ为ï¼
è¿éå¦æä¸ç¨yieldï¼é£ä¹å¨å表ä¸çå ç´ é常大æ¶ï¼å°ä¼å ¨é¨è£ å ¥å åï¼è¿æ¯é常浪费å åçï¼åæ¶ä¹ä¼éä½æçã
3ãæ£å表达å¼ä¸compileæ¯å¦å¤æ¤ä¸ä¸¾ï¼
æ¯å¦ç°å¨æ个éæ±ï¼å¯¹äºææ¬ä¸å½ï¼ç¨æ£åå¹é åºæ ç¾éé¢çâä¸å½âï¼å ¶ä¸classçç±»åæ¯ä¸ç¡®å®çãæ两ç§æ¹æ³ï¼ä»£ç å¦ä¸ï¼
è¿é为ä»ä¹è¦ç¨compileå¤å两è¡ä»£ç å¢ï¼åå æ¯compileå°æ£å表达å¼ç¼è¯æä¸ä¸ªå¯¹è±¡ï¼å å¿«é度ï¼å¹¶éå¤ä½¿ç¨ã
4ã[[1,2],[3,4],[5,6]]ä¸è¡ä»£ç å±å¼è¯¥å表ï¼å¾åº[1,2,3,4,5,6]
5ãä¸è¡ä»£ç å°å符串"-"æå ¥å°"abcdefg"ä¸æ¯ä¸ªå符çä¸é´
è¿éä¹å»ºè®®å¤ä½¿ç¨os.path.join()æ¥æ¼æ¥æä½ç³»ç»çæ件路å¾ã
6ãzipå½æ°
zip()å½æ°å¨è¿ç®æ¶ï¼ä¼ä»¥ä¸ä¸ªæå¤ä¸ªåºåï¼å¯è¿ä»£å¯¹è±¡ï¼å为åæ°ï¼è¿åä¸ä¸ªå ç»çå表ãåæ¶å°è¿äºåºåä¸å¹¶æçå ç´ é 对ãzip()åæ°å¯ä»¥æ¥åä»»ä½ç±»åçåºåï¼åæ¶ä¹å¯ä»¥æ两个以ä¸çåæ°;å½ä¼ å ¥åæ°çé¿åº¦ä¸åæ¶ï¼zipè½èªå¨ä»¥æçåºåé¿åº¦ä¸ºåè¿è¡æªåï¼è·å¾å ç»ã
pythonå¿ èå ¥é¨ä»£ç æ¯ä»ä¹ï¼pythonå¿ è代ç æ¯ï¼
defnot_emptyï¼sï¼ï¼
returnsandlenï¼sãstripï¼ï¼ï¼0
#returnsandsãstripï¼ï¼
#å¦æç´æ¥ååsãstripï¼ï¼é£ä¹så¦ææ¯Noneï¼ä¼æ¥éï¼å 为None没æstripæ¹æ³ã
#å¦æsæ¯Noneï¼é£ä¹Noneandä»»ä½å¼é½æ¯Falseï¼ç´æ¥è¿åfalse
#å¦æséNoneï¼é£ä¹å¤å®sãtripï¼ï¼æ¯å¦ä¸ºç©ºã
è¿æ ·åfilterè½è¿æ»¤å°Noneï¼""ï¼""è¿æ ·çå¼ã
åæ两é¨åçã第ä¸é¨åæ¯å¯¹é¿åº¦è¿è¡åºåãç¸å½äºå°±æ¯range(5)ä»çç»æå°±æ¯ãã第äºé¨åå°±æ¯å ·ä½çæåºè§åãæåºè§åæ¯ç¨numsçå¼è¿è¡æåºï¼reverse没ç³æå°±æ¯é»è®¤ååºãå°±æ¯ç¨nums(0å°4)çå¼è¿è¡æåºï¼æ ¹æ®è¿ä¸ªç»æè¿åçä¸ä¸ªrange(5)çæ°ç»ã
pythonå¿ èå 容ï¼
1ãåéãæå¨ç¨åºæ§è¡è¿ç¨ä¸ï¼å¯åçéãå®ä¹ä¸ä¸ªåéï¼å°±ä¼ä¼´éæ3个ç¹å¾ï¼åå«æ¯å åIDï¼æ°æ®ç±»åååéå¼ã常éï¼æå¨ç¨åºæ§è¡è¿ç¨ä¸ï¼ä¸å¯åçéãä¸è¬é½ç¨å¤§ååæ¯å®ä¹å¸¸éã
2ãä¸ç¨åºäº¤äºãå¤æ¶åï¼æ们å»é¶è¡åé±ï¼éè¦æä¸ä¸ªé¶è¡ä¸å¡åççæ们æèªå·±çè´¦å·å¯ç è¾å ¥ç»ä»ï¼ç¶åä»å»è¿è¡éªè¯çæååï¼æ们åå°å款éé¢è¾å ¥ï¼åè¯ä»ã
éªå²çç°ä»£äººï¼ä¼ä¸ºå®¢æ·æä¾ä¸å°ATMæºï¼è®©ATMæºè·ç¨æ·äº¤äºï¼ä»èå代人åãç¶èæºå¨æ¯æ»çï¼æä»¬å¿ é¡»ä¸ºå ¶ç¼åç¨åºæ¥è¿è¡ï¼è¿å°±è¦æ±æ们çç¼ç¨è¯è¨ä¸è½å¤æä¸ç§è½ä¸ç¨æ·äº¤äºï¼æ¥æ¶ç¨æ·è¾å ¥æ°æ®çæºå¶ã
pythonå®ç¨ä»£ç
pythonå®ç¨ä»£ç å¦ï¼
abs(number)ï¼è¿åæ°åçç»å¯¹å¼ï¼cmath.sqrt(number)ï¼è¿åå¹³æ¹æ ¹ï¼ä¹å¯ä»¥åºç¨äºè´æ°ï¼float(object)ï¼å°å符串åæ°å转æ¢ææµ®ç¹æ°ã
Pythonæ¯ä¸ç§å¹¿æ³ä½¿ç¨ç解éåãé«çº§åéç¨çç¼ç¨è¯è¨ãPythonç±è·å °æ°å¦å计ç®æºç§å¦ç 究å¦ä¼çGuidovanRossumåé ï¼ç¬¬ä¸çåå¸äºå¹´ï¼å®æ¯ABCè¯è¨çå继è ï¼ä¹å¯ä»¥è§ä¹ä¸ºä¸ç§ä½¿ç¨ä¼ ç»ä¸ç¼è¡¨è¾¾å¼çLISPæ¹è¨ã
Pythonæä¾äºé«æçé«çº§æ°æ®ç»æï¼è¿è½ç®åææå°é¢å对象ç¼ç¨ã
Pythonæºç æ¯ä»ä¹ææï¼Pythonæºç ï¼Pythonsourcecodeï¼æçæ¯Pythonç¼ç¨è¯è¨çå®ç°ä»£ç ææºä»£ç ï¼å æ¬Python解éå¨ä»¥åæ ååºä¸ç模ååå ï¼æ¯ç¨Pythonè¯è¨ç¼åçæºä»£ç æ件éåã
Pythonæºç å为两é¨åï¼æ ¸å¿æºä»£ç åæ ååºæºä»£ç ãæ ¸å¿æºä»£ç æçæ¯Python解éå¨çæºä»£ç ï¼å³è¿è¡Pythonç¨åºç主è¦ç¨åºãæ ååºæºä»£ç æçæ¯Pythonçæ ååºï¼å æ¬å 置模åï¼å¦osãreãdatetimeçï¼ãæ ååºæ¨¡åï¼å¦mathãrandomãjsonçï¼ä»¥å第ä¸æ¹åºï¼å¦requestsãnumpyãpandasçï¼ã
对äºåå¦è æ¥è¯´ï¼Pythonæºç å¯¹å ¶æ¥è¯´æä¸å®çåèåå¦ä¹ ä»·å¼ãå¦ä¹ Pythonæºç å¯ä»¥å¸®å©äººä»¬æ´å¥½å°ç解Pythonè¯è¨çå·¥ä½åçåæºå¶ï¼ç解Pythonå®ç°ç»èï¼ç£¨ç»èªå·±ç代ç æ°´å¹³åè½åãä½æ¯ï¼ç±äºPythonæºç åºå¤§ä¸å¤æï¼æ以人们ä¸è¬ä¸ä¼ä»å¤´å¦ä¹ ï¼èæ¯éè¿å¦ä¹ Pythonæç¨ãåèææ¡£çéæ¥ææ¡ç¸å ³ç¥è¯ã
游戏引擎随笔 0x:UE5 Nanite 源码解析之渲染篇:BVH 与 Cluster 的 Culling
在UE5 Nanite的渲染深度中,一个关键组件是其独特的剔除策略,特别是通过高效的BVH(Bounded Volume Hierarchy)和Cluster Culling技术。Nanite的目标在于智能地控制GPU资源,避免不必要的三角形绘制,确保每一点计算都被最大化利用。
首先,Nanite的渲染流程中,异步数据传输和GPU初始化完成后,进入CullRasterize阶段,其中的PersistentCulling pass至关重要。它分为两个步骤: BVH Node Culling 和 Cluster Culling,每个阶段都利用多线程并行处理,实现了GPU性能的极致发挥。
在Node Culling中,每个线程处理8个节点,通过Packed Node数据结构,确保数据的一致性和同步性。每组个线程间通过MPMC Job Queue协同工作,保证了负载均衡,避免了GPU资源的浪费。GroupNodeMask和NodeReadyMask等优化策略,确保了节点处理的高效性和准确性。
核心部分是TGS GroupNodeData,它接收并处理来自候选节点的Packed Node,进行实例数据、动态数据和BVH节点数据的整合。通过Frustum Culling,仅保留可见的节点,非叶节点的计数更新和候选Cluster的生成,都在这个过程中完成。
叶节点的Cluster Culling更为精细,通过计算Screen Rect,判断是否适合渲染。当遇到硬件光栅化需求时,Nanite会利用上一帧的LocalToClip矩阵进行HZB遮挡剔除,确保每个Cluster的可见性和正确性。
在硬件光栅化中,VisibleClusterOffset的计算和Cluster的有序写入,体现了UE5团队对性能的精心调教。而软光栅化则采取相反的存储策略,确保了渲染的高效执行。
尽管Nanite在百万面模型处理上展现出惊人的0.5ms速度,但它并非无懈可击,如不支持Forward Rendering。然而,随着UE5技术的不断迭代,Nanite的潜力和优化空间将继续扩展,推动着游戏开发的创新边界。
总之,UE5 Nanite的渲染篇是技术与艺术的完美融合,通过深度剖析其渲染流程,我们不仅能领略到高效剔除策略的魅力,更能感受到Unreal团队在性能优化上的匠心独运。深入源码,解锁游戏引擎的内在魔力,让我们一起期待Nanite在未来的更多可能。