1.handlerԴ?码介????
2.源码解析,Glide加载GIF图的码介原理竟然这么简单
3.Handler知识详解与源码分析
4.Spring MVC组件之HandlerMapping
5.Java的并行世界-Netty中线程模型源码讲解-续集Handler、Channel
6.Handler 执行流程及源码解析
handlerԴ?码介????
在Android应用开发中,Handler的码介使用频率极高,它解决了一个关键问题:Android禁止在子线程直接修改UI。码介那么,码介测八字 起名 源码Handler为何如此必要?其内部消息处理机制又是码介如何运作的呢?深入理解需要参考源代码,毕竟它涉及复杂的码介逻辑。
Handler主要用于异步消息的码介处理。当我们发送一个消息后,码介它会被放入一个消息队列,码介发送者会立即返回,码介而队列中的码介处理部分会逐个取出并处理这些消息,实现发送和接收的码介异步。这种机制特别适用于处理耗时操作,码介以避免阻塞主线程。
Handler的工作流程可以这样想象:Looper就像一个不断旋转的传送带,Handler通过send或post方法将消息(Message)送到传送带上,形成MessageQueue。Looper.loop()启动这个传送带,当消息到达接收端时,Handler.dispatch()负责传递给目标。
简单来说,Handler创建时会使用当前线程的Looper来构建消息循环。如果没有Looper,需手动创建,主线程有默认Looper,其他线程需要时需自定义。关键概念包括MessageQueue(消息队列,单链表结构)、Message(消息对象,存储在MessageQueue中)、Looper(管理MessageQueue的euraka源码分析管理者,与线程绑定)。
创建线程时,MessageQueue不会自动创建,需要通过Looper.prepare()来实现。MessagePool用于缓存Message实例,避免频繁创建。Looper.loop()会持续从MessageQueue中取出并处理消息,直到队列为空。
理解Handler的工作原理对Android开发者至关重要,它在应用程序的并发处理中发挥着关键作用。想要深入学习,可以查阅《Android核心开发手册》等专业资料。
源码解析,Glide加载GIF图的原理竟然这么简单
在探讨之前,让我们明确一点:Android的ImageView实际上并不支持直接加载GIF动图,因为ImageView基于Canvas绘制,而Canvas仅支持drawBitmap一次绘制一张。那么,Glide是如何巧妙地让ImageView展现出GIF动画的呢?
让我们从Glide的源码入手,今天的主角是GifDrawable。这个类虽然有大约行代码,但理解其工作原理并非无迹可寻。首先,我们注意到一个开始播放第一帧的方法,这可能是入口点。
代码结构中,当GIF有多帧时,会订阅特定事件。关键在于观察三句代码:一是递增帧位置,表明采用无限轮播算法;二是加载资源回调,通过Target接口来触发;三是消息传递,用Handler进行控制。server源码结构
在加载资源的回调中,我们看到消息机制在发挥作用。当接收到消息,会根据what参数进行处理。在handleMessage中,处理了延迟消息和清理消息。延迟消息会获取新帧数据并绘制到ImageView,同时清除旧帧,接着进入下一个帧的加载和清除过程。
总结来说,Glide加载GIF的原理相当直观:GIF被解析为一系列,通过无限轮播,每次新帧的加载都触发一次请求。在完成绘制后,旧帧会被清除,然后继续下一轮的加载。整个过程通过Handler的消息传递机制驱动循环播放。以上内容摘自Android轮子哥的分享。
Handler知识详解与源码分析
Handler是Android中的核心组件,它负责在不同线程间传递消息。其工作原理是通过内存共享,允许子线程(生产者)向主线程(消费者)发送消息,以及主线程向子线程发送指令。这种机制有助于线程间协作,如网络请求完成后更新UI等场景。
Message是消息的实体,承载着数据和执行指令。MessageQueue是一个优先级队列,负责存储和调度消息。Handler则是个消息处理类,负责发送、获取和处理消息,屠戮指标源码以及管理消息队列。Looper的存在是为了从MessageQueue中轮询消息,执行相应操作。
创建Handler有多种方式,包括主线程的匿名内部类和静态内部类,以及子线程中的Looper.prepare()和Looper.loop()。发送消息的方法丰富多样,如sendMessage()、sendMessageDelayed()等,可以控制消息的执行时间和顺序。处理消息时,Handler与MessageQueue、Looper的交互是关键,保证了消息处理的线程安全。
在源码分析中,我们发现Looper的创建和使用与APP启动流程紧密相关,确保每个线程只有一个Looper,避免内存泄漏。MessageQueue的线程同步和消息屏障机制确保了消息的有序处理。此外,如何处理内存管理、线程同步问题以及Looper的退出策略也是处理Handler时需要注意的要点。
最后,对于Handler的使用,如创建、消息发送和处理,以及可能遇到的问题,如内存泄漏、线程同步等,都有详细的解析和解决方案。理解这些概念有助于开发人员更有效地利用Handler进行线程间的通信。
Spring MVC组件之HandlerMapping
HandlerMapping组件在Spring MVC中扮演着关键角色,叶大户源码它负责解析每个请求,并找到相应的处理器(Handler)进行处理。Handler通常指的是Controller控制器中的某个方法。
HandlerMapping组件执行两大核心任务:一是组件初始化时,将请求与对应的处理器进行注册,即在映射表中以键值对形式存储请求和处理器;二是解析请求,从映射表中查找相应的处理器。
HandlerMapping接口在Spring的源码中定义,其主要实现类分属两个系列:AbstractHandlerMethodMapping与AbstractUrlHandlerMapping。AbstractHandlerMethodMapping实现了HandlerMapping接口,而AbstractUrlHandlerMapping实现了MatchableHandlerMapping接口。
AbstractHandlerMapping是一个基础抽象类,其核心在于模板设计模式,允许子类覆盖特定方法实现业务逻辑。AbstractHandlerMapping继承自WebApplicationObjectSupport类,负责初始化上下文时,处理拦截器。
AbstractHandlerMethodMapping继承自AbstractHandlerMapping,实现InitializingBean接口,确保在实例化时,自动完成注册工作。其初始化注册逻辑主要在afterPropertiesSet方法中,通过循环遍历所有Bean,筛选出符合@Controller和@RequestMapping注解的处理器进行注册。
RequestMappingInfoHandlerMapping类重写getMatchingMapping方法,根据请求返回匹配的RequestMappingInfo对象,Spring MVC则据此获取对应的Handler。
RequestMappingHandlerMapping重写父类的afterPropertiesSet、isHandler和getMappingForMethod方法,分别负责初始化、过滤处理器以及创建RequestMappingInfo对象,用于请求与Handler映射。
AbstractUrlHandlerMapping系列专注于url与Handler之间的映射关系,首先存储映射,再通过url获取对应的处理器。AbstractUrlHandlerMapping实现MatchableHandlerMapping接口,包含match方法用于匹配。
HandlerMap的注册与查找逻辑在AbstractUrlHandlerMapping中实现,包括url与Handler的注册以及根据url查找对应Handler。lookupHandler方法通过url直接或使用PathPattern进行模式匹配,获取Handler并完成注册和校验。
BeanNameUrlHandlerMapping与SimpleUrlHandlerMapping分别通过Bean名称和Properties配置文件进行url与Handler的注册,简化了映射配置。
综上所述,HandlerMapping组件在Spring MVC架构中发挥着核心作用,通过高效地解析请求并匹配相应的处理器,保证了应用的响应速度与灵活性。
Java的并行世界-Netty中线程模型源码讲解-续集Handler、Channel
Netty 的核心组件 ChannelHandler 在网络应用中扮演着处理入站和出站事件及数据的关键角色。ChannelHandler 的子类负责执行不同类型的事件处理和数据操作,以实现特定的网络业务逻辑。以下是 ChannelHandler 子类的分类及其功能介绍:
首先,特殊类型的Handler,如 ChannelHandlerContext,它连接了处理器与Channel之间的上下文关系,方便数据交互和事件触发。
其次,ChannelInboundHandler 和 ChannelOutboundHandler 分别负责处理入站和出站的数据。ChannelInboundHandlerAdapter 示例如时间服务器,当连接建立时发送时间并断开,而 ChannelOutboundHandlerAdapter 则如客户端发送消息。
ByteToMessageDecoder 和 MessageToByteEncoder 分别负责数据的解码和编码,如基于换行符的文本协议服务器和字符串消息的编码。
ChannelDuplexHandler 如聊天服务器,处理双向通信,例如广播消息。SimpleChannelInboundHandler 提供了便捷的入站事件处理,避免了手动管理消息引用计数。
Channel相关的核心概念是 Channel,它代表了网络连接,隐藏了底层通信方式的细节,支持数据读写和事件监听。Netty 提供了多种Channel子类,如 NioServerSocketChannel 和 EpollServerSocketChannel,用于适应不同应用场景。
在服务器启动时,ChannelInitializer 用于初始化新连接的 ChannelPipeline,配置处理器以执行特定的业务逻辑。Netty 4.1 源码结构提供了学习的入口,后续会分享更详细的注释版源码。
总的来说,通过理解和使用这些 ChannelHandler 和 Channel 的特性,开发者可以构建出功能丰富的网络应用。持续关注,将分享更多源码解析和学习资源。
Handler 执行流程及源码解析
本文深入解析了Handler的执行流程及源码,围绕Looper、MessageQueue、Message、Handler之间的协作运行机制,详细介绍了从sendMessage到handlerMessage的代码执行流程。
在UI线程中,Looper是自动创建的,通过调用Looper.prepareMainLooper()方法,此方法内部调用了Looper的prepare()方法来创建Looper对象,并将其存储在ThreadLocal中,实现线程内部的数据存储。对于子线程,则需手动创建Looper,方法与UI线程一致,同样通过Looper.prepare()完成。
Handler在初始化时,通过ThreadLocal获取当前线程的Looper与MessageQueue。发送消息时,有三种方式:sendMessage、obtainMessage与post(runable),它们实质上操作相同,差异仅在于对Message的处理。最终,所有消息都会通过sendMessage方法调用到MessageQueue的enqueueMessage实现。
MessageQueue内部使用单链表维护消息列表,主要包含enqueueMessage与next两个操作:enqueueMessage实现数据插入,next通过死循环检查并删除链表中的消息。当MessageQueue中出现新消息时,Looper会立即检测到并处理。
Looper的loop()方法内有一个死循环,通过messageQueue.next()检查消息队列,获取并删除新消息。检测到新消息后,调用msg.target.dispatchMessage(msg)处理消息,此方法在Looper内执行,切换到Handler创建时的线程,由Handler发送的消息最终回到Handler内部,执行dispatchMessage(msg)方法。
Handler处理消息分为三种情况:执行run()方法,实现线程切换;使用Callback接口的实例作为mCallback,用于不使用Handler派生类的情况;重写handlerMessage(msg)方法处理具体业务。至此,从sendMessage到handlerMessage的整个流程得以清晰展现。
整体流程总结如下:
1. 在Handler初始化时,获取线程的Looper与MessageQueue;
2. sendMessage方法最终调用enqueueMessage插入Message到队列,并将Handler赋值给Message对象的target属性;
3. MessageQueue在插入Message后,Looper检测到新消息,并开始处理;
4. Looper的loop方法通过traget属性获取到Handler对象,执行dispatchMessage方法;
5. 最终调用继承自Handler的handlerMessage方法处理具体业务。
Handler 的基本使用、常见问题的源码解析以及运行机制源码讲解
Handler 是Android中处理异步操作的关键组件。它主要有两种使用方式:sendMessage() 和post()。sendMessage() 有三种实现途径,包括创建Handler对象、创建Message对象并发送,以及接收和处理消息。post() 则是通过将Runnable对象放入消息队列,由主线程的Looper处理。
深入理解Handler,我们需要关注常见问题。比如在主线程和子线程创建Handler的区别:主线程创建时,由于ActivityThread初始化过程自动设置了Looper,而子线程创建则需要手动设置,否则会因无法获取主线程Looper而抛异常。更新UI是否必须在主线程,实际上,子线程可以更新,但必须在requestLayout和invalidate操作之间完成,否则可能导致异常。
创建Handler的两种方式有差异,方式一使用匿名内部类或接口回调,方式二虽简洁但有警告,不推荐,因为其消息处理是通过Handler的dispatchMessage方法调用接口的handleMessage,而方式一则是直接调用重写的方法。post()方法与sendMessage()的区别在于前者会将Runnable对象封装成Message对象并发送到目标Handler,后者则直接调用目标Handler的dispatchMessage方法。
创建Message有两种方法,obtain()和obtainMessage()。obtain()会从缓存池获取或创建消息,而obtainMessage()则是传递了Handler对象,可以直接通过message.sendToTarget()发送。不当使用Handler可能导致内存泄漏,通常是由于Handler持有外部类引用,当外部类被销毁时,消息队列中的消息未处理,造成引用循环,从而无法被垃圾回收。
最后,Handler的运行机制包含四个步骤:初始化主线程Looper和MessageQueue,创建Handler时绑定Looper和队列,发送消息至消息队列,然后由Looper从队列中取出并分发消息,根据不同发送方式调用不同的处理方法。深入研究Handler,有助于更高效地管理Android应用的异步任务和UI更新。