1.STM32 SPI DMA 源码解析及总结
2.Pytorch nn.Module接口及源码分析
3.Flink Collector Output 接口源码解析
4.Java教程:dubbo源码解析-网络通信
5.Vert.x 源码解析(4.x)——Context源码解析
6.PostgreSQL 技术内幕(十七):FDW 实现原理与源码解析
STM32 SPI DMA 源码解析及总结
一 前言
在调试STM的SPI接口时,我遇到了一个复杂的源码源码难题。解决这一问题花费了大量时间,解析接口解析接口这次经历促使我回顾并总结了STM的源码源码SPI代码。本文将以此为主线,解析接口解析接口分享我在这个过程中的源码源码easyui ssh源码下载心得。
二 初始化
STM SPI接口的解析接口解析接口初始化遵循标准流程,包括初始化和配置两部分。源码源码确保接口正确初始化,解析接口解析接口需注意以下几点:
1. 避免重复使用接口,源码源码确保其唯一性。解析接口解析接口
2. 检查接口硬件部分是源码源码否正常连接,可通过GPIO端口的解析接口解析接口电平检测。
3. 选择合适的源码源码系统主频,避免设置过高,解析接口解析接口以匹配SPI接口的速率。
三 数据收发
数据收发功能通过HAL库的API实现,主要包括:
1. 数据发送:`HAL_SPI_Transmit_DMA`函数。
2. 数据接收:`HAL_SPI_Receive_DMA`函数。
使用时应特别注意CS(Chip Select)信号的控制,确保在DMA操作期间保持CS低电平,避免数据丢失。
四 总结
在SPI开发中,遵循正确流程至关重要。面对问题,应基于对代码的理解和实践经验进行分析,而不是依赖计算机自动解决。正确处理初始化、数据收发等环节,避免常见错误,能有效提升开发效率。
Pytorch nn.Module接口及源码分析
本文旨在介绍并解析Pytorch中的torch.nn.Module模块,它是构建和记录神经网络模型的基础。通过理解和掌握torch.nn.Module的作用、常用API及其使用方法,开发者能够构建更高效、灵活的神经网络架构。
torch.nn.Module主要作用在于提供一个基类,用于创建神经网络中的所有模块。它支持模块的树状结构构建,允许开发者在其中嵌套其他模块。游戏通道支付源码通过继承torch.nn.Module,开发者可以自定义功能模块,如卷积层、池化层等,这些模块的前向行为在`forward()`方法中定义。例如:
python
import torch.nn as nn
class SimpleModel(nn.Module):
def __init__(self):
super(SimpleModel, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=3)
self.conv2 = nn.Conv2d(in_channels=6, out_channels=, kernel_size=3)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
return x
torch.nn.Module还提供了多种API,包括类变量、重要概念(如parameters和buffer)、数据类型和设备类型转换、hooks等。这些API使开发者能够灵活地控制和操作模型的状态。
例如,可以通过requires_grad_()方法设置模块参数的梯度追踪,这对于训练过程至关重要。使用zero_grad()方法清空梯度,有助于在反向传播后初始化梯度。`state_dict()`方法用于获取模型状态字典,常用于模型的保存和加载。
此外,_apply()方法用于执行自定义操作,如类型转换或设备迁移。通过__setattr__()方法,开发者可以方便地修改模块的参数、缓存和其他属性。
总结而言,torch.nn.Module是Pytorch中构建神经网络模型的核心组件,它提供了丰富的API和功能,支持开发者创建复杂、高效的神经网络架构。通过深入理解这些API和方法,开发者能够更高效地实现各种深度学习任务。
Flink Collector Output 接口源码解析
Flink Collector Output 接口源码解析
Flink中的Collector接口和其扩展Output接口在数据传递中起关键作用。Output接口增加了Watermark功能,是数据传输的基石。本文将深入解析collect方法及相关重要实现类,帮助理解数据传递的逻辑和场景划分。Collector和Output接口
Collector接口有2个核心方法,Output接口则增加了4个功能,WatermarkGaugeExposingOutput接口则专注于显示Watermark值。主要关注collect方法,pytorch卷积层源码它是数据发送的核心操作,Flink中有多个Output实现类,针对不同场景如数据传递、Metrics统计、广播和时间戳处理。Output实现类分类
Output类可以归类为:同一operatorChain内的数据传递(如ChainingOutput和CopyingChainingOutput)、跨operatorChain间(RecordWriterOutput)、统计Metrics(CountingOutput)、广播(BroadcastingOutputCollector)和时间戳处理(TimestampedCollector)。示例应用与调用链路
通过一个示例,我们了解了Kafka Source与Map算子之间的数据传递使用ChainingOutput,而Map到Process之间的传递则用RecordWriterOutput。在不同Output的选择中,objectReuse配置起着决定性作用,影响性能和安全性。 总结来说,ChainingOutput用于operatorChain内部,RecordWriterOutput处理跨chain,CountingOutput负责Metrics,BroadcastingOutputCollector用于广播,TimestampedCollector则用于设置时间戳。开启objectReuse会影响选择的Output类型。阅读推荐
Flink任务实时监控
Flink on yarn日志收集
Kafka Connector更新
自定义Kafka反序列化
SQL JSON Format源码解析
Yarn远程调试源码
State Processor API状态操作
侧流输出源码
Broadcast流状态源码解析
Flink启动流程分析
Print SQL Connector取样功能
Java教程:dubbo源码解析-网络通信
在之前的内容中,我们探讨了消费者端服务发现与提供者端服务暴露的相关内容,同时了解到消费者端通过内置的负载均衡算法获取合适的调用invoker进行远程调用。接下来,我们聚焦于远程调用过程,即网络通信的细节。
网络通信位于Remoting模块中,支持多种通信协议,包括但不限于:dubbo协议、rmi协议、hessian协议、ty进行网络通讯,NettyClient.doOpen()方法中可以看到Netty的相关类。序列化接口包括但不限于:Serialization接口、Hessian2Serialization接口、Kryo接口、FST接口等。
序列化方式如Kryo和FST,贷款源码便宜性能往往优于hessian2,能够显著提高序列化性能。这些高效Java序列化方式的引入,可以优化Dubbo的序列化过程。
在配置Dubbo RPC时,引入Kryo和FST非常简单,只需在RPC的XML配置中添加相应的属性即可。
关于服务消费方发送请求,Dubbo框架定义了私有的RPC协议,消息头和消息体分别用于存储元信息和具体调用消息。消息头包括魔数、数据包类型、消息体长度等。消息体包含调用消息,如方法名称、参数列表等。请求编码和解码过程涉及编解码器的使用,编码过程包括消息头的写入、序列化数据的存储以及长度的写入。解码过程则涉及消息头的读取、序列化数据的解析以及调用方法名、参数等信息的提取。
提供方接收请求后,服务调用过程包含请求解码、调用服务以及返回结果。解码过程在NettyHandler中完成,通过ChannelEventRunnable和DecodeHandler进一步处理请求。服务调用完成后,通过Invoker的invoke方法调用服务逻辑。响应数据的编码与请求数据编码过程类似,涉及数据包的构造与发送。
服务消费方接收调用结果后,首先进行响应数据解码,获得Response对象,并传递给下一个处理器NettyHandler。处理后,响应数据被派发到线程池中,此过程与服务提供方接收请求的过程类似。
在异步通信场景中,Dubbo在通信层面为异步操作,al3201源码通信线程不会等待结果返回。默认情况下,RPC调用被视为同步操作。Dubbo通过CompletableFuture实现了异步转同步操作,通过设置异步返回结果并使用CompletableFuture的get()方法等待完成。
对于异步多线程数据一致性问题,Dubbo使用编号将响应对象与Future对象关联,确保每个响应对象被正确传递到相应的Future对象。通过在创建Future时传入Request对象,可以获取调用编号并建立映射关系。线程池中的线程根据Response对象中的调用编号找到对应的Future对象,将响应结果设置到Future对象中,供用户线程获取。
为了检测Client端与Server端的连通性,Dubbo采用双向心跳机制。HeaderExchangeClient初始化时,开启两个定时任务:发送心跳请求和处理重连与断连。心跳检测定时任务HeartbeatTimerTask确保连接空闲时向对端发送心跳包,而ReconnectTimerTask则负责检测连接状态,当判定为超时后,客户端选择重连,服务端采取断开连接的措施。
Vert.x 源码解析(4.x)——Context源码解析
Vert.x 4.x 源码深度解析:Context核心概念详解 Vert.x 通过Context这一核心机制,解决了多线程环境下的资源管理和状态维护难题。Context在异步编程中扮演着协调者角色,确保线程安全的资源访问和有序的异步操作。本文将深入剖析Context的源码结构,包括其接口设计、关键实现以及在Vert.x中的具体应用。Context源代码解析
Context接口定义了基础的事件处理功能,如立即执行和阻塞任务。ContextInternal扩展了Context,包含内部方法和功能,通常开发者无需直接接触,如获取当前线程的Context。在vertx的beginDispatch和endDispatch方法中,Context的切换策略取决于线程类型,Vertx线程会使用上下文切换,而非Vertx线程则依赖ThreadLocal。 ContextBase是ContextInternal的实现类,负责执行耗时任务,内部包含TaskQueue来管理任务顺序。WorkerContext和EventLoopContext分别对应工作线程和EventLoop线程的执行策略,它们通过execute()、runOnContext()和emit()方法处理任务,同时监控性能。 Context的创建和获取贯穿于Vert.x的生命周期,它在DeploymentManager的doDeploy方法中被调用,如NetServer和NetClient等组件的底层实现也依赖于Context来处理网络通信。额外说明
Context与线程并非直接绑定,而是根据场景动态管理。部署时创建新Context,非部署时优先获取Thread和ThreadLocal中的Context。当执行异步任务时,当前线程的Context会被暂时替换,任务完成后才恢复。源码中已加入详细注释,如需获取完整注释版本,可联系作者。 Context的重要性在于其在Vert.x的各个层面如服务器部署、EventBus通信中不可或缺,它负责维护线程同步与异步任务的执行顺序,是异步编程中不可或缺的基石。理解Context的实现,有助于更好地利用Vert.x进行高效开发。PostgreSQL 技术内幕(十七):FDW 实现原理与源码解析
FDW,全称为Foreign Data Wrapper,是PostgreSQL提供的一种访问外部数据源的机制。它允许用户通过SQL语句访问和操作位于不同数据库系统或非数据库类数据源的外部数据,就像操作本地表一样。以下是从直播内容整理的关于FDW的使用详解、实现原理以及源码解析。 ### FDW使用详解 FDW在一定规模的系统中尤为重要,数据仓库往往需要访问外部数据来完成分析和计算。通过FDW,用户可以实现以下场景: 跨数据库查询:在PostgreSQL数据库中,用户可以直接请求和查询其他PostgreSQL实例,或访问MySQL、Oracle、DB2、SQL Server等主流数据库。 数据整合:从不同数据源整合数据,如REST API、文件系统、NoSQL数据库、流式系统等。 数据迁移:高效地将数据从旧系统迁移到新的PostgreSQL数据库中。 实时数据访问:访问外部实时更新的数据源。 PostgreSQL支持多种常见的FDW,能够直接访问包括远程PostgreSQL服务器、主流SQL数据库以及NoSQL数据库等多种外部数据源。### FDW实现原理
FDW的核心组件包括:1. **Foreign Data Wrapper (FDW)**:特定于各数据源的库,定义了如何建立与外部数据源的连接、执行查询及处理其他操作。例如,`postgres_fdw`用于连接其他PostgreSQL服务器,`mysql_fdw`专门连接MySQL数据库。
2. **Foreign Server**:本地PostgreSQL中定义的外部服务器对象,对应实际的远程或非本地数据存储实例。
3. **User Mapping**:为每个外部服务器设置的用户映射,明确哪些本地用户有权访问,并提供相应的认证信息。
4. **Foreign Table**:在本地数据库创建的表结构,作为外部数据源中表的映射。对这些外部表发起的SQL查询将被转换并传递给相应的FDW,在外部数据源上执行。
FDW的实现涉及PostgreSQL内核中的`FdwRoutine`结构体,它定义了外部数据操作的接口。接口函数包括扫描、修改、分析外部表等操作。### FDW源码解析
FDW支持多种数据类型,并以`Postgres_fdw`为例解析其源码。主要包括定义`FdwRoutine`、访问外部数据源、执行查询、插入、更新和删除操作的逻辑。 访问外部数据源:通过`postgresBeginForeignScan`阶段初始化并获取连接到远端数据源。 执行查询:进入`postgresIterateForeignScan`阶段,创建游标迭代器并从其中持续获取数据。 插入操作:通过`postgresBeginForeignInsert`、`postgresExecForeignInsert`和`postgresEndForeignInsert`阶段来执行插入操作。 更新/删除操作:遵循与插入操作相似的流程,包括`postgresBeginDirectModify`、`postgresIterateDirectModify`和相应的结束阶段。 对于更深入的技术细节,建议访问B站观看视频回放,以获取完整的FDW理解和应用指导。Flink mysql-cdc connector 源码解析
Flink 1. 引入了 CDC功能,用于实时同步数据库变更。Flink CDC Connectors 提供了一组源连接器,支持从MySQL和PostgreSQL直接获取增量数据,如Debezium引擎通过日志抽取实现。以下是Flink CDC源码解析的关键部分:
首先,MySQLTableSourceFactory是实现的核心,它通过DynamicTableSourceFactory接口构建MySQLTableSource对象,获取数据库和表的信息。MySQLTableSource的getScanRuntimeProvider方法负责创建用于读取数据的运行实例,包括DeserializationSchema转换源记录为Flink的RowData类型,并处理update操作时的前后数据。
DebeziumSourceFunction是底层实现,继承了RichSourceFunction和checkpoint接口,确保了Exactly Once语义。open方法初始化单线程线程池以进行单线程读取,run方法中配置DebeziumEngine并监控任务状态。值得注意的是,目前只关注insert, update, delete操作,表结构变更暂不被捕捉。
为了深入了解Flink SQL如何处理列转行、与HiveCatalog的结合、JSON数据解析、DDL属性动态修改以及WindowAssigner源码,可以查阅文章。你的支持是我写作的动力,如果文章对你有帮助,请给予点赞和关注。
本文由文章同步助手协助完成。
SpringBoot的CommandLineRunner和ApplicationRunner源码分析
深入探究SpringBoot中的ApplicationRunner和CommandLineRunner接口。这两个接口在启动SpringBoot应用时起到关键作用,下面将对它们进行源码分析。
首先,让我们聚焦于ApplicationRunner接口,其内部定义了一个名为run的方法,无需额外参数,源码如下所示,展示了接口的基本框架。
接着,审视CommandLineRunner接口,同样地,它也仅定义了一个run方法,同样没有额外参数,源码内容在此。接口设计简洁,旨在支持特定逻辑的执行。
为了更直观地理解这些接口的运行,让我们通过实际项目进行演示。具体操作是将SpringBoot项目打包为JAR文件并执行。
在项目执行过程中,观察并分析代码,可以揭示更多关于ApplicationRunner和CommandLineRunner接口如何在实际应用中运作的细节。
接下来,以ApplicationRunnerDemo和CommandLineRunnerDemo为例,深入探讨接口的使用。首先,审视ApplicationRunnerDemo类,了解如何定义实现ApplicationRunner接口的实例并注入应用上下文。然后,通过CommandLineRunnerDemo类,进一步探索实现CommandLineRunner接口的实例,关注参数传递的机制以及接口执行的时机。
至此,参数传递、参数解析以及获取参数的过程已经清晰呈现。此外,ApplicationRunner和CommandLineRunnerDemo的执行时机也已明确阐述,为理解SpringBoot启动过程中的关键逻辑提供了深入洞察。
WAVM源码解析 —— WASI接口定义、内部实例初始化及实例链接
从前面文章中,我们知道WAVM执行WASM程序的流程。本文着重解析第三、四、五部分:生成内部实例、调用接口与实例链接。
生成内部实例的关键在于调用接口,接口参数是Intrinsics::Module类型的列表。内部实例不基于WASM程序,仅关注导入导出段内容,因此Intrinsics::Module类仅包含Function、Global、Table、Memory等元素。宏定义WAVM_INTRINSIC_MODULE_REF(wasi)生成一个Intrinsics::Module对象,其实际实现对应WASI标准接口。
初始化Intrinsics::Module对象通过宏函数WAVM_DEFINE_INTRINSIC_FUNCTION完成,这个宏定义接口并将其赋值给Intrinsics::Module对象。以sched_yield为例,宏定义后生成一个静态的Intrinsics::Function对象,通过构造函数自动赋值到Intrinsics::Module中。
Intrinsics::instantiateModule()函数执行步骤包括:将moduleRefs转化为IR::Module,编译生成的IR::Module,调用实例化接口函数生成内部实例。关键步骤为将外部接口函数转化为WASM格式的thunks函数,并将thunks导出。最终,通过实例化创建出内部实例,与普通实例的主要区别在于导入段内容的获取方式。
链接器实现实例化的一大功能,即提供查询导出项的接口。核心逻辑简单,具体实现则较为复杂,本文不展开解析。关于实例化细节,后续文章将深入探讨。