【像素鸟java版源码】【高尚集团源码】【爱普生解码源码】unreal 源码分析

时间:2024-11-21 00:29:43 编辑:内核穿盾源码 来源:sqlalchemy示例源码

1.UE5在Windows平台上的源码WindowsEngine.ini文件源码解读分析
2.unreal资源的元数据
3.UE4源码剖析:MallocBinned(上)
4.UE5在iOS上的DataDrivenPlatformInfo.ini文件源码解读分析
5.游戏引擎随笔 0x29:UE5 Lumen 源码解析(一)原理篇
6.UE5引擎Paper2D插件上的IntMargin.h文件源码解读分析

unreal 源码分析

UE5在Windows平台上的WindowsEngine.ini文件源码解读分析

       引言: 在深入探究UE5的底层结构时,WindowsEngine.ini文件的分析作用不可小觐。

       它是源码Unreal Engine 5中对Windows平台特有的设置和优化的集合体,从音频处理到贴图流,分析再到系统级的源码性能配置,每一行代码都蕴含着引擎开发者对于性能和用户体验的分析像素鸟java版源码考量。

       本文将详尽地解析WindowsEngine.ini文件的源码每个部分,揭示其背后的分析逻辑和设计哲学。

       每一条注释都紧跟在对应的源码设置项后面,解释该设置项的分析功能和目的。这些注释对于理解和维护配置文件至关重要,源码尤其是分析在涉及多人协作或长期项目维护时。

       1、源码[Audio] 部分

       2、分析[TextureStreaming] 部分

       3、源码[SystemSettings] 部分

       4、[PlatformCrypto] 部分

       结语: WindowsEngine.ini文件不仅仅是一系列配置项的罗列,更是UE5为Windows平台精心调优的证明。

       通过这些设置,开发者能够为玩家提供更佳的视听体验和更流畅的游戏性能。

       这份文件的每一项配置都是引擎优化和平台兼容性工作的见证,展现了Unreal Engine在跨平台支持方面的卓越能力。

unreal资源的元数据

       uasset的metadata定义

       metadata指的是在uasset导入后,额外添加的自定义信息。这种信息采用key-value的结构,并且仅在editor下使用,对正式发布的资源没有任何影响。

       自定义信息的操作方式

       对于这类自定义信息,可以进行以下操作:

       增加metadata的高尚集团源码方法

       目前有两种方法可以增加metadata,分别是蓝图和Python。

       使用蓝图增加metadata

       首先需要安装Editor Scripting Utilities。

       通过Editor Utilities>Editor Utility Blueprint创建一个编辑工具类。

       例如,如果想要为资源添加作者,完成蓝图后,执行该工具即可为资源添加元数据。

       使用Python增加metadata

       首先需要安装Python Editor Scripting Plugin。

       然后选择一个合适的位置创建一个Python脚本。

       UE默认寻找的路径是引擎源码/Engine/Binaries/Win(系统平台)/下。

       查看metadata

       查看metadata非常简单。

       选中要查看的资源,然后右键菜单中选择Asset Actions>Show Metadata。

UE4源码剖析:MallocBinned(上)

       近期着手UE4项目开发,对UnrealEngine已久仰慕,终于得此机会深入探索。鉴于项目内存性能问题,决定从内存分配器着手,深入研读UE4源码。虽个人水平有限,尚不能全面理解,但愿借此机会揭开源码神秘面纱,让新手朋友们不再感到陌生。

       UE4内存分配器位于硬件抽象层HAL(Hardware Abstraction Layer)中。具体装箱内存分配器代码位于VS项目目录:UE4/Source/Runtime/Core/Private/HAL/MallocBinned。

       分析从ApplePlatformMemory::BaseAllocator开始,可发现Mac平台的默认分配器为MallocBinned,iOS的爱普生解码源码默认分配器为MallocAnsi。以下将重点分析MallocBinned。

       一、确定对齐方式

       FScopeLock用于局部线程锁,确保线程同步。关于Alignment的确定,通常使用默认值。默认值取决于内存对齐方式,此处默认对齐为8字节。

       二、确定有足够空间来内存对齐

       代码中,SpareBytesCount用于确认空间足够。若分配内存小于8字节,则按Alignment大小匹配箱体;若大于8字节,则按Size + Alignment - sizeof(FFreeMem)匹配箱体。

       三、确定箱体大小

       根据Size的大小,有三种不同的处理方式。k以下的内存分配采用装箱分配,PoolTable中包含个不同大小的池子。

       四、初始化内存池

       分析内存池初始化过程,主要工作包括:确定内存大小,分配内存块,设置内存池基本信息。

       五、内存装箱

       AllocateBlockFromPool从内存池中分配一个Block,实现内存装箱过程。

UE5在iOS上的litv 源码 方法DataDrivenPlatformInfo.ini文件源码解读分析

       Unreal Engine 5(UE5)提供了强大的数据驱动平台信息体系,开发者通过配置文件能对不同平台实现精准设置。此配置确保游戏在多平台下展现一致表现与体验。本文深入剖析了DataDrivenPlatformInfo.ini文件在UE5项目中对iOS平台的参数设定。

       平台基础信息涵盖:

       常规设置

       图标路径与教程路径

       编译器与组平台设置

       预览平台设置涉及:

       IOSMetal与IOSMetalSM5

       预览特性

       着色器平台设置包含:

       ShaderPlatform METAL

       ShaderPlatform METAL_MRT

       通过精细配置DataDrivenPlatformInfo.ini,UE5开发者可针对iOS设备特性优化游戏。每一项设置旨在最大化利用硬件,同时确保跨平台一致性。随着UE5与iOS硬件发展,理解与应用这些配置项对于游戏成功至关重要。

游戏引擎随笔 0x:UE5 Lumen 源码解析(一)原理篇

       实时全局光照的追求一直是图形渲染界的焦点。随着GPU硬件光线追踪技术的兴起,Epic Games的Unreal Engine 5推出了Lumen,一个结合SDF、Voxel Lighting、Radiosity等技术的软件光线追踪系统。Lumen的实现极其复杂,涉及个Pass,近5.6万行C++代码和2万行Shader,与Nanite、Virtual Shadow Map等系统紧密集成,并支持混合使用硬件和软件光线追踪。

       本系列将逐步解析Lumen,从原理入手。Lumen以简化间接光照(主要由漫反射构成)为核心,采用Monte Carlo积分方法估算,利用Ray Tracing获取Radiance,生成Irradiance,最终得到光照值。图片抓取源码它的核心是Radiance的计算、缓存和查询,以及这些操作的高效整合。

       数学原理上,Lumen依赖渲染方程,通过离散采样近似无限积分。它主要处理Diffuse部分,利用Lambert Diffuse和Ray Tracing获取Radiance。加速结构方面,Lumen利用SDF Ray Marching在无需硬件支持的情况下实现高效的SWRT。

       Surface Cache是关键技术,通过预生成的低分辨率材质属性图集,高效获取Hit Point的Material Attribute,结合SDF Tracing,为Lumen提供了实时性能。Radiance Cache则是将Direct Lighting结果保存,便于后续的光照计算和全局光照的无限反弹。

       Lumen构建了一个由DF和Surface Cache构成的低精度场景表示,即Lumen Scene,负责Mesh DF更新、Global DF合并和Surface Cache更新。通过Screen Space Probe的自适应放置,Lumen实现了高效的光照追踪和降噪处理。

       总体流程包括Lumen Scene更新、Lighting计算和Final Gather,涉及众多数据流和过程,通过3D Texture和Spatial Filtering进行降噪和Light Scattering的处理。后续篇章将深入源码,以更详细的方式揭示Lumen的实现细节和优化策略。

UE5引擎Paper2D插件上的IntMargin.h文件源码解读分析

       深入探索Unreal Engine 5 (UE5) 的Paper2D插件时,我们发现IntMargin.h文件中定义了FIntMargin结构体,它用于在整数网格上描述2D区域周围空间的一种数据结构。FIntMargin是一个简单而直观的结构体,用于存储和操作2D界面元素的边距。它采用结构体形式,包含四个公共成员变量:Left、Top、Right和Bottom,使用int类型存储,通过UPROPERTY宏标记为蓝图可读写,归类于Appearance类别。

       FIntMargin设计简洁,仅用于存储相关数据,无封装或继承特性。UE5的代码风格倾向于使用结构体来表示简单的数据集合。FIntMargin包含了四个构造函数,分别用于不同初始化场景,便于快速实例化。结构体通过重载+和-运算符,实现边距的加法和减法操作,简化布局调整中的边距计算。同时,==和!=运算符也被重载,用于比较两个FIntMargin实例是否相等。

       GetDesiredSize方法返回一个FIntPoint结构体,表示由当前边距定义的总尺寸,强化了FIntMargin在布局计算中的功能性。IntMargin.h文件的架构体现了UE5编码风格中的简洁性、直观性和高度的可读性,符合其对代码清晰度、性能和易用性的整体设计哲学。

       FIntMargin结构体虽然简单,但它是UE5中Paper2D插件架构中的基本构建块之一,体现了UE5的设计原则。通过理解此类基本组件,开发者可以深入掌握UE5架构的关键步骤。在未来的版本中,UE5可能会对FIntMargin进行进一步的迭代和优化,以保持其在不断演进的技术环境中的领先地位。

UE动画优化之URO(UpdateRateOptimizations)源码解析

       1. URO技术是Unreal Engine动画优化的重要组成部分,它通过智能调整远离摄像头的对象的动画帧率,实现了动画质量和性能的平衡。

       2. 在UE中,URO与LOD和VisibilityBasedAnimTick协同工作,核心动画处理主要在USkeletalMeshComponent的TickComponent和TickPose中执行。

       3. FAnimUpdateRateManager负责指挥整个动画更新频率的调整过程,根据对象距离、LOD等因素动态地进行优化,确保每一帧的动画都既流畅又经济。

       4. USkinnedMeshComponent通过TickUpdateRate和FAnimUpdateRateManager的配合,实现了URO的效果。开发者可以通过SetTrailMode和SetLookAheadMode等函数,对动画参数进行精细调整,使角色动作既自然又节能。

       5. 要掌握URO,关键在于四个策略:命令行魔法、距离阈值决定论、LOD定制策略和插值选项。这些策略可以通过CVarEnableAnimRateOptimization、CVarForceAnimRate、MaxDistanceFactor、LODToFrameSkipMap等参数进行调整。

       6. SkeletalMesh组件提供了VisibilityBasedAnimTickOption设置,以实现不同状态下的动画表现一致性。

       7. 使用DisplayDebugUpdateRateOptimizations,开发者可以可视化URO的运行情况,帮助精准调整优化策略,提升游戏性能。

       8. 通过细致的设置,URO就像一位精密的调音师,为游戏世界赋予了动态且高效的动画生命。

为什么unreal虚幻引擎源码编译如此慢,有方法改进吗?

       为何虚幻引擎源码编译过程缓慢?确实,许多开发者在使用虚幻引擎时,会遇到编译时间过长的问题,这可能对项目进度造成影响。幸运的是,存在多种策略帮助优化编译速度。首先,考虑使用IncrediBuild、FastBuild或Horde等工具,它们能显著提升编译效率。请确保所购买的许可证支持当前处理器的核心数量,否则加速效果受限。

       其次,性能卓越的CPU是关键。选择高性能CPU将直接影响编译速度。请注意,CPU的性能直接影响编译加速效果,购买CPU时,务必检查与当前硬件匹配的许可证类型。

       将引擎源码与项目放入固态硬盘能显著提升读取和写入速度,加速编译过程。SSD的高速性能可极大地减少编译时间,提高开发效率。

       第三,禁用项目中不必要的插件也能有效缩短编译时间。每个插件都会增加编译负担,因此,精简配置能提高编译效率。

       在Windows 操作系统下,遇到使用小核而非大核的情况时,可以尝试使用Process Lasso工具。此工具有助于调整CPU使用策略,确保大核得到充分利用。然而,在Windows 系统上,这一问题通常不会出现。

       综上所述,通过优化硬件选择、利用编译加速工具、改进项目配置以及合理管理CPU使用策略,开发者可以有效提升虚幻引擎源码的编译速度,从而加速项目开发进程。

UE5 源码结构解读——Unreal Engine 5文件系统详细导览

       欢迎加入“虚幻之核:UE5源码全解”,探索Unreal Engine 5(UE5)的深层秘密。作为一款行业领先的游戏引擎,UE5不仅集成了Nanite虚拟化微多边形几何系统和Lumen动态全局光照等革新技术,还提供了一个深度解析专栏,帮助开发者、图形程序员和技术艺术家从源码级别理解其核心构造。

       UE5不仅仅是一个游戏引擎,它代表了虚幻技术的巅峰,赋予了创造创新视觉和互动体验的无限可能。我们的专栏将深入探讨这些技术背后的源代码,揭示它们的工作原理,并展示如何在您的项目中实现和优化它们。

       每一期专栏都是一个精心设计的知识模块,旨在让读者不仅掌握UE5的功能,更从源码层面掌握其实现细节。从资产流水线到渲染过程,从物理模拟到AI行为树,无论您希望优化当前项目性能,还是探索UE5隐藏的功能和技巧,这里都将为您提供宝贵的资源。

       “虚幻之核:UE5源码全解”是您探索虚幻引擎深层秘密的起点,让我们用源码解答虚幻世界中的奥秘。