1.【Spring源码】插播一个创建代理对象的发展发展wrapIfNecessary()方法
2.代理模式与静态代理、动态代理的代理代理实现(Proxy.newProxyInstance、InvocationHandler)
3.UE4 代理(Delegate)源码浅析(3)
4.UE4 代理(Delegate)源码浅析(2)
5.node-http-proxy 源码解读
6.基于 Golang 实现的源码源码 Shadowsocks 源码解析
【Spring源码】插播一个创建代理对象的wrapIfNecessary()方法
在深入探讨Spring源码中创建代理对象的`wrapIfNecessary()`方法之前,先简要回顾其作用。发展发展`wrapIfNecessary()`方法主要任务是代理代理基于一系列条件判断,决定是源码源码易语言网页源码找内容否为Bean创建代理对象,从而实现AOP(面向切面编程)的发展发展功能。下面,代理代理我们将逐步解析这一方法的源码源码内部逻辑。
`wrapIfNecessary()`方法的发展发展执行流程可以分为以下阶段:
1. **条件判断**:
- **已处理Bean**:首先检查传入的Bean是否已处理过,即在`targetSourcedBeans`集合中是代理代理否存在该Bean的记录。
- **已创建代理**:接着检查`advisedBeans`集合中是源码源码否已有该Bean的代理对象缓存,以确认是发展发展否需要再次创建代理。
- **自定义Bean**:通过`isInfrastructureClass()`方法判断是代理代理否为Spring自带的Bean,排除此类无需代理的源码源码情况。
- **无需代理**:如果上述任一条件满足,则直接返回传入的Bean对象,无需创建代理。
2. **代理创建**:
- **获取Advices和Advisors**:如果上述条件均不满足,则调用`getAdvicesAndAdvisorsForBean()`方法获取当前Bean的Advices和Advisors信息。
- **判断适配**:通过`findEligibleAdvisors()`方法从候选通知器中筛选出适合当前Bean的Advisors,确保这些Advisors可以应用到当前Bean。
- **实现逻辑**:通过`findCandidateAdvisors()`和`findAdvisorsThatCanApply()`方法进一步筛选、拓展、排序Advisors,最终获取到实际需要应用的Adviser集合。
3. **代理构建**:
- **决策**:根据获取的Advisors判断是否需要创建代理。若结果非`DO_NOT_PROXY`,源码组合模式则调用`createProxy()`方法创建代理对象,并缓存以备后续使用。
- **过程**:在创建代理过程中,`exposeTargetClass()`方法设置Bean的属性,`shouldProxyTargetClass()`方法决定使用JDK动态代理还是CGLIB动态代理,`evaluateProxyInterfaces()`方法添加代理接口,最终通过`getProxy()`方法构建代理对象。
4. **优化与扩展**:
- **Advisors排序**:调用`sortAdvisors()`方法对Advisors进行排序,优化代理逻辑执行顺序。
- **扩展与定制**:通过`extendAdvisors()`方法提供扩展点,允许对目标Advisor进行进一步定制。
5. **构建代理对象**:
- **代理工厂**:通过`AopProxyFactory`初始化代理工厂,并在构建代理对象时,考虑接口添加、回调函数配置等,最终通过`createProxy()`方法生成可调用的代理对象。
通过这一系列复杂而有序的过程,`wrapIfNecessary()`方法实现了根据特定条件判断是否创建代理对象,并构建出适用于面向切面编程场景的代理对象,进而增强了应用程序的功能性和灵活性。
代理模式与静态代理、动态代理的实现(Proxy.newProxyInstance、InvocationHandler)
代理模式在设计模式中被广泛应用,尤其是在Android开发中,如Retrofit利用动态代理实现API接口调用,Dagger使用代码生成和反射机制创建依赖注入代理。本文将详细解释代理模式,排名变化源码并探讨静态代理与动态代理的实现方式。
代理模式的核心思想在于不直接访问目标对象,而是通过访问代理对象来间接操作目标。例如,与明星打交道时,通过经纪人(代理)进行联系而非直接接触明星。这种方式能实现目标对象功能的扩展,增强额外操作。
代理模式实现有静态代理与动态代理。静态代理中代理与目标对象共用接口或继承同一父类。操作流程如下:定义接口或父类、目标对象类、代理对象类、使用代理类。静态代理易于理解,但存在代码冗余和扩展性差的缺点。
动态代理是通过运行时生成代理对象实现的,无需代理与目标对象共用接口。Java中Proxy类提供方法生成代理对象。动态代理在内存中构建代理类,允许在运行时为目标对象添加功能,而无需修改源代码。实现过程包括确定目标接口、目标对象、调用newProxyInstance生成代理对象、使用代理对象。
动态代理实现了灵活性与扩展性,京东挂源码是实际开发中更常用的代理模式。但代理对象仍需目标对象实现接口。对于未实现接口的目标对象,可使用cglib或ByteBuddy库进行代理。
cglib库虽能实现非接口目标对象的代理,但已不再维护,新版本Java中可能存在兼容性问题。因此,推荐使用ByteBuddy库。ByteBuddy库在代理非接口目标对象方面提供了更稳定、高效的解决方案。
总结,代理模式提供了一种在不修改目标对象代码的情况下扩展其功能的方法。静态代理简洁直观,但存在扩展性限制;动态代理则在运行时实现代理,提供更多灵活性,但需目标对象实现接口。对于未实现接口的目标对象,可借助cglib或ByteBuddy库实现代理。选择合适的代理模式及库能够有效提升系统设计与实现的灵活性与效率。
UE4 代理(Delegate)源码浅析(3)
本文章仅为个人在学习虚幻引擎过程中的理解,可能存在不准确之处,如有错误,欢迎指正。
本文将深入探讨虚幻引擎中的两种动态代理机制,并与静态代理进行比较。前两篇已详细介绍了静态代理和事件机制,高pv源码本篇作为系列的终结篇,将重点解析动态代理。
动态代理与静态代理的主要区别在于动态代理能够与蓝图进行交互。本文将通过分析源码,揭示动态代理实现与静态代理的区别。
动态单播代理的实现基于宏DECLARE_DYNAMIC_DELEGATE_OneParam。宏接收三个参数:代理名、参数类型和参数名。宏使用BODY_MACRO_COMBINE辅助宏,将参数拼接为独一无二的名字,进而实现代理类的封装。
执行代理方法通常涉及宏FUNC_DECLARE_DYNAMIC_DELEGATE,该宏接收多个参数,如弱指针类型、代理名、执行函数接口、参数类型列表、真正传给绑定函数的参数等。这些参数在执行函数接口中整合,实现动态代理的执行。
动态单播代理的父类TBaseDynamicDelegate内部定义了TMethodPtrResolver,用于处理代理的绑定。__Internal_BindDynamic方法实现代理绑定功能。动态单播代理继承自TScriptDelegate,该类提供了与代理绑定相关的各种方法。
动态多播代理的实现方式与静态多播相似,内部保存动态单播的数组,用于执行代理时调用数组中绑定的函数,实现多播效果。动态多播代理的宏为DECLARE_DYNAMIC_MULTICAST_DELEGATE_OneParam,其内部实现与动态单播代理类似。
动态多播代理的父类TBaseDynamicMulticastDelegate提供了代理绑定的内部接口,如判断代理是否绑定、添加绑定、删除绑定等。动态多播代理继承自TMulticastScriptDelegate,该类定义了用于处理多播代理的数组实例。
总结而言,动态代理与静态代理的架构类似,通过不同的参数配置和宏实现,实现了与蓝图的交互。动态代理在实现上更加灵活,支持多播和单播功能,为虚幻引擎提供了强大的事件处理能力。本文旨在提供动态代理的源码解析,帮助开发者更好地理解和使用虚幻引擎的代理机制。
UE4 代理(Delegate)源码浅析(2)
在探讨虚幻引擎(UE4)代理(Delegate)的源码时,本篇文章旨在深入解析静态多播代理与事件的实现机制,以期为开发者提供更直观的理解。静态多播代理与静态单播代理在代码结构上有着诸多相似之处,本文将重点聚焦于静态多播代理的实现原理,同时简要介绍事件的底层机制。
静态多播代理的主要实现在于使用单播代理的数组结构,通过将绑定函数加入数组中来实现多播效果。这一实现方式的核心在于TMulticastDelegate模板类,它通过类型重定义将传入的参数类型作为模板参数传给父类TBaseMulticastDelegate。TBaseMulticastDelegate提供了多种添加绑定函数的方法,最终通过调用AddDelegateInstance实现绑定函数的添加。
在多播代理的执行阶段,通过遍历代理函数表(InvocationList)中的IDelegateInstance,执行保存的代理函数,实现了多播代理的广播效果。此外,多播代理的实现还涉及了线程安全的考虑,通过加锁和解锁操作来确保并发环境下的正确执行顺序。
事件与多播代理在实现上高度相似,其底层机制同样基于多播代理的实现。通过在事件声明中引入友元概念,事件为特定类提供了访问权限,实际上,事件的实现与多播代理的实现原理相同,只是在访问控制上进行了特殊化处理。
本章小结,本文针对静态多播代理的DECLARE_MULTICAST_DELEGATE_OneParam以及事件的DECLARE_EVENT_OneParam进行了详细解析,旨在帮助开发者深入理解这两种代理的实现机制。对于更深入的探究,开发者可以查阅源码,源码目录位于文章开头的指定位置。感谢您的阅读。
node-mon.setupOutgoing的实现;其次,stream的实现;最后,查看源码了解web-outgoing模块对代理响应的处理。setRedirectHostRewrite函数的代码实现也在这里。
在websocket请求中,this.wsPasses任务队列包含四种处理函数:checkMethodAndHeader, XHeaders, stream。stream函数的处理流程同上。
http-proxy-middleware和nokit-filter-proxy库都使用了node-http-proxy来实现服务器代理功能。http-proxy-middleware库的源码解读可以参考相关文章。nokit-filter-proxy库用于为nokit服务器添加代理功能,它是通过绑定onRequest事件函数来实现请求的拦截和转发的。
这两篇文章都是在作者整理完proxy设计模式后整理的。由于作者水平有限,文章中可能存在错误或不足之处,欢迎读者批评指正。
基于 Golang 实现的 Shadowsocks 源码解析
本教程旨在解析基于Golang实现的Shadowsocks源码,帮助大家理解如何通过Golang实现一个隧道代理转发工具。首先,让我们从代理和隧道的概念入手。
代理(Proxy)是一种网络服务,允许客户端通过它与服务器进行非直接连接。代理服务器在客户端与服务器之间充当中转站,可以提供隐私保护或安全防护。隧道(Tunnel)则是一种网络通讯协议,允许在不兼容网络之间传输数据或在不安全网络上创建安全路径。
实验环境要求搭建从本地到远程服务器的隧道代理,实现客户端访问远程内容。基本开发环境需包括目标网络架构。实验目的为搭建隧道代理,使客户端能够访问到指定远程服务器的内容。
Shadowsocks通过TCP隧道代理实现,涉及客户端和服务端关键代码分析。
客户端处理数据流时,监听本地代理地址,接收数据流并根据配置文件获取目的端IP,将此IP写入数据流中供服务端识别。
服务端接收请求,向目的地址发送流量。目的端IP通过特定函数解析,实现数据流的接收与识别。
数据流转发利用io.Copy()函数实现,阻塞式读取源流数据并复制至目标流。此过程可能引入阻塞问题,通过使用协程解决。
解析源码可学习到以下技术点:
1. 目的端IP写入数据流机制。
2. Golang中io.Copy()函数实现数据流转发。
3. 使用协程避免阻塞式函数影响程序运行效率。
4. sync.WaitGroup优化并行任务执行。
希望本文能为你的学习之旅提供指导,欢迎关注公众号获取更多技术分析内容。
cglib底层源码分析(⼀)
cglib是一种动态代理技术,用于生成代理对象。例如,现有UserService类。使用cglib增强该类中的test()方法。
分析底层源码前,先尝试用cglib代理接口。定义UserInterface接口,利用cglib代理,正常运行。
代理类是由cglib生成,想知道代理类生成过程?运行时添加参数:1 -Dcglib.debugLocation=D:\IdeaProjects\cglib\cglib\target\classes。cglib将代理类保存至指定路径。
比较代理类,代理UserService与代理UserInterface的区别:UserService代理类是UserService的子类,UserInterface代理类实现了UserInterface。
代理类中,test()方法及CGLIB$test$0()方法存在,后者用于执行增强逻辑。若不设置Callbacks,则代理对象无法正常工作。
代理类中另一个方法通过设置的Callback(MethodInterceptor中的MethodProxy对象)调用。MethodProxy表示方法代理,执行流程进入intercept()方法时,MethodProxy对象即为所调用方法。
执行methodProxy.invokeSuper()方法,执行CGLIB$test$0()方法。总结cglib工作原理:生成代理类作为Superclass子类,重写Superclass方法,Superclass方法对应代理类中的重写方法和CGLIB$方法。
接下来的问题:代理类如何生成?MethodProxy如何实现?下篇文章继续探讨。