【源码apk】【手机上如何运行源码】【直方图的原理和源码】hadoop 2.7.2 源码

1.flink1.10.0连接apache-hive-2.3.7(Java程序)
2.在Ubuntu里面搭建四个节点内存怎么分配?
3.如何在MaxCompute上运行HadoopMR作业
4.描述脚本一键启动HDFS集群和Yarn集群前的源码准备工作和启动的方法?

hadoop 2.7.2 源码

flink1.10.0连接apache-hive-2.3.7(Java程序)

       通过Java程序连接Apache Flink 1..0与Apache Hive 2.3.7,主要步骤如下:

       第一步:添加依赖,源码包括以下库:

       org.apache.flink flink-table-planner-blink_2. 1..0

       org.apache.flink flink-connector-hive_2. 1..0

       org.apache.flink flink-table-api-java-bridge_2. 1..0

       org.apache.hive hive-exec ${ hive.version} provided

       org.apache.hadoop hadoop-mapreduce-client-core 2.7.3

       org.apache.hadoop hadoop-common 2.7.3

       org.apache.hadoop hadoop-mapreduce-client-common 2.7.3

       org.apache.hadoop hadoop-mapreduce-client-jobclient 2.7.3

       org.apache.flink flink-shaded-hadoop-2-uber 2.7.5-8.0 provided

       org.datanucleus datanucleus-api-jdo 4.2.4

       org.datanucleus datanucleus-core 4.1.

       org.datanucleus datanucleus-rdbms 4.1.

       mysql mysql-connector-java 8.0.

       org.datanucleus javax.jdo 3.2.0-m3

       第二步:编写程序,源码加载hive-site.xml,源码源码apk并执行如下代码:

       java

       import org.apache.flink.table.api.EnvironmentSettings;

       import org.apache.flink.table.api.Table;

       import org.apache.flink.table.api.TableEnvironment;

       import org.apache.flink.table.catalog.hive.HiveCatalog;

       public class HiveConnect {

        public static void main(String[] args) {

        EnvironmentSettings settings = EnvironmentSettings

        .newInstance()

        .useBlinkPlanner()

        .inBatchMode()

        .build();

        TableEnvironment tableEnv = TableEnvironment.create(settings);

        String name = "myhive";

        String defaultDatabase = "ydj";

        String hiveConfDir = "D:\\OfficeWork\\WorkSpace\\GitLab\\big-data-extension\\achilles-algorithm-platform\\src\\main\\resources";

        String version = "2.3.4";

        HiveCatalog hive = new HiveCatalog(name,源码 defaultDatabase, hiveConfDir, version);

        tableEnv.registerCatalog("myhive", hive);

        tableEnv.useCatalog("myhive");

        String createDbSql = "select * from ydj.center";

        Table table = tableEnv.sqlQuery(createDbSql);

        System.out.println(table);

        }

       }

在Ubuntu里面搭建四个节点内存怎么分配?

       一、硬件配置以及操作系统:

       所需要的源码机器以及操作系统:一台mac os笔记本、一台window笔记本(CPU双核四线程,源码内存8G),源码其中mac os用于远程操作,源码window笔记本装有虚拟机,源码虚拟出3个ubuntu.系统(配置CPU1个线程2个,源码手机上如何运行源码内存1.5G,源码硬盘分配每个G),源码对于mac os(可以用window机或者linux机)的源码配置没有要求

       使用vm创建3个ubuntu.系统,一个主节点:master(NameNode)和两个从节点slave1(DataNode)和slave2(DataNode)

       节点IP分配:主节点IP为:..0.、源码从节点1IP为:..0.、直方图的原理和源码从节点2IP为:..0.

       虚拟机的网络选择桥接模式与物理网络的网段相同,这样有助于远程连接。

       master的主机名为:sunxj-hdm,slave1的主机名为:sunxj-hds1,slave2的主机名为:sunxj-hds2,如下图所示:

       定义域名:sunxj-hdm.myhd.com(master),筹码获利比例显示源码sunxj-hds1.myhd.com(slave1),sunxj-hds2.myhd.com(slave2)

       配置hosts,将3台的hosts配置为:

       ..0. sunxj-hdm.myhd.com..0. sunxj-hds1.myhd.com
..0. sunxj-hds2.myhd.com

       如下图所示:

       注意:不能放在最下边,从注释行开始往下是配置ipv6的,ip和域名之间必须是贴片机源码系统一个tab,且域名后不能有空格,否则是ping不通的,还有3个主机必须配置相同才能互ping。

        7.然后使用如下命令进行重启网络

       sudo /etc/init.d/networking restart

       如下图所示:

       8、然后通过ping sunxj-hds1.myhd.com查看是否可以ping的通,如果是通的则配置成功,如果不通需要在找原因了,如下图所示:

       在master机ping slave1和slave2

       在 slave1机ping master和slave2

       在 slave2机ping master和slave1

       二、节点需要安装的工具:

       三个节点需要安装的工具为:vm-tool、gcc、net-tools、openssh-server、vsftpd、vim(用于ftp服务)

       安装顺序:

       (1)sudo apt install gcc

       (2) 安装vm-tool

       (3)sudo apt install net-tools

       (4)sudo apt install vim

       (5)sudo apt install openssh-server(可以使用/etc/init.d/ssh start 启动ssh)

       (6)在安装好ssh后即可远程操作,在macos中打开终端进行ssh远程连接,如下图所示:

       (7)安装ftp服务并配置vsftpd请看:t bigint);

       é€šè¿‡tunnel将数据导入输入表中

       å¾…导入文本文件data.txt的数据内容如下:

       hello maxcompute

       hello mapreduce

       ä¾‹å¦‚可以通过如下命令将data.txt的数据导入wc_in中,

       tunnel upload data.txt wc_in;

       4. 准备好表与hdfs文件路径的映射关系配置

       é…ç½®æ–‡ä»¶å‘½åä¸ºï¼šwordcount-table-res.conf

       {

       "file:/foo": {

       "resolver": {

       "resolver": "c.TextFileResolver",

       "properties": {

       "text.resolver.columns.combine.enable": "true",

       "text.resolver.seperator": "\t"

       }

       },

       "tableInfos": [

       {

       "tblName": "wc_in",

       "partSpec": { },

       "label": "__default__"

       }

       ],

       "matchMode": "exact"

       },

       "file:/bar": {

       "resolver": {

       "resolver": "openmr.resolver.BinaryFileResolver",

       "properties": {

       "binary.resolver.input.key.class" : "org.apache.hadoop.io.Text",

       "binary.resolver.input.value.class" : "org.apache.hadoop.io.LongWritable"

       }

       },

       "tableInfos": [

       {

       "tblName": "wc_out",

       "partSpec": { },

       "label": "__default__"

       }

       ],

       "matchMode": "fuzzy"

       }

       }

描述脚本一键启动HDFS集群和Yarn集群前的准备工作和启动的方法?

       给你个脚本,修改一下自己的服务器地址就行,启动直接加个start运行该脚本 ,停止加个stop运行该脚本

       #!/bin/bash

       if [ $# -lt 1 ]

       then

       echo "No Args Input..."

       exit;

       fi

       case $1 in

       "start")

       echo " =================== 启动Hadoop集群 ==================="

       echo " ------------------- 启动HDFS -------------------"

       ssh hadoop "/opt/module/hadoop-2.7.2/sbin/start-dfs.sh"

       echo " ------------------- 启动YARN -------------------"

       ssh hadoop "/opt/module/hadoop-2.7.2/sbin/start-yarn.sh"

       ;;

       "stop")

       echo " =================== 关闭Hadoop集群 =================="

       echo " ------------------- 关闭YARN ------------------"

       ssh hadoop "/opt/module/hadoop-2.7.2/sbin/stop-yarn.sh"

       echo " ------------------- 关闭HDFS ------------------"

       ssh hadoop "/opt/module/hadoop-2.7.2/sbin/stop-dfs.sh"

       ;;

       *)

       esac

更多内容请点击【探索】专栏