【大气企业网站源码php】【查看用户相册源码】【传奇凌风源码】api搭建源码_api 源码

来源:fil挖矿平台源码

1.JAIN SIP API详解与GB28181服务器实现【保姆级源码教程】
2.一个很有想法的建源开源项目rocket-api
3.API 接口开发没那么难,Python FastApi Web 框架教程来了!源码
4.ONNX一本通:综述&使用&源码分析(持续更新)
5.Python C语言API教程(一、建源用C写一个Python包)
6.jenkins源代码管理+接入钉钉api发送接口自动化测试报告

api搭建源码_api 源码

JAIN SIP API详解与GB28181服务器实现【保姆级源码教程】

       本文阐述了基于Java SE开发客户端SIP应用的源码流程,利用JAIN SIP API,建源构建了一个基础即时通讯程序以及一个简易GB协议应用。源码大气企业网站源码php首先,建源我们介绍了JAIN SIP API,源码它是建源一个强大的“SIP协议栈”,用于客户端应用开发,源码同时也适用于GB协议的建源服务器端实现。本文详细分析了API的源码组成部分,包括maven坐标、建源类/接口概述,源码以及如何创建消息处理器和SIP协议栈。建源

       接下来,我们以即时通讯程序为例,展示了如何通过SIP协议发送和接收文本消息。程序中的`TextClient`类实现了消息处理,与GUI层分离,使得代码结构更加清晰。对于SIP协议栈的实现,我们创建了`SipLayer`类,并注册了监听器来处理传入消息,同时实现了发送和接收SIP请求与响应的方法。在发送请求时,我们使用了JAIN SIP API构造SIP消息,包括消息的基本元素如联系人标头和消息内容。对于接收响应,查看用户相册源码我们实现了一个监听器接口来处理成功或错误响应。

       为了进一步实现GB协议的SIP服务器,我们按照GB协议规范设计了服务器实现流程。首先,创建了一个基于SpringBoot的项目,并引入了JAIN SIP API依赖。接着,我们初始化了SIP协议栈,配置了服务器的IP、端口、域名、ID和密码。通过`SipServerListener`接口,我们实现了SIP请求与响应的处理逻辑,使用了异步处理来提高并发处理能力。对于接收的请求,我们根据请求类型调用相应的真实处理对象,如注册请求和保活请求,通过解析MANSCDP命令集来识别保活请求,并回复相应的响应代码。在实际应用中,SIP服务器能够与IPC进行信令交互,实现注册、保活等关键功能,满足GB协议中的控制流程与接口规定。

       本文中,SIP服务器实现了GB协议中的IPC注册、保活功能,传奇凌风源码同时提供了流媒体服务器和WEB服务器的集成,支持点播、通道同步、不同格式的流媒体预览,并且提供了人脸识别功能。目前,该系统支持注册、保活、设备信息查询、目录查询、点播等功能,并且正在进行持续的代码更新。对于需要SIP服务器源码的用户,可以通过私信联系作者。

一个很有想法的开源项目rocket-api

       本文介绍了名为rocket-api的开源项目,其主要特性在于通过界面化定义语义碎片生成所需的访问代码,实现无需编写传统的Controller,VO,DAO层代码。初次接触可能稍显困惑,但通过官网的教程和本地运行实践后,可以更深入理解其工作原理。

       官网提供了快速部署指南,用户可以轻松搭建项目。值得注意的是,项目需要外置数据库以创建初始表,但不需要初始化数据,登录账号应与数据库账号相同。sr连刷源码

       官网文档中还展示了如何在1分钟内实现一个API接口,通过定义映射访问自定义脚本“select * from aaa”所查出的数据。API数据持久化存储,即使项目重启,仍可访问指定端点。有趣的是,虽然未在源码中见到类生成,但新增的映射能够通过访问运行。

       火箭-api底层使用了Java 1.8后提供的ScriptEngineManager和Groovy引擎,实现动态编译。首次访问后生成Java类,后续调用直接运行,无需编译。这使得项目高效、灵活。

       核心处理类QLRequestMappingFactory负责将API注册为request mapping,并解析入参和存储的执行脚本。requestMappingHandlerMapping是SpringBoot提供的方法,用于动态注册映射,适用于需要此类功能的项目。

       执行脚本的方法默认使用Groovy引擎,输入框语法支持完全的Groovy语法,允许进行复杂的数据处理。对于想要尝试的用户,了解这些特性后,可以进一步探索如何通过Groovy语法实现更复杂的操作。

       总结而言,火箭-api提供了一种新颖、1688高仿源码高效的方式来构建API,通过简化代码生成和动态执行,提高了开发效率并增强了功能灵活性。通过深入学习其原理和使用方法,用户可以更充分地利用这一工具,实现自己的项目需求。

API 接口开发没那么难,Python FastApi Web 框架教程来了!

       欢迎关注@Python与数据挖掘,专注 Python、数据分析、数据挖掘、好玩工具!

       快来看看FastAPI的教程吧!

       FastAPI是由Sebastian Ramirez开发的一款高性能的Web框架,让你的API接口开发变得轻松快捷。

       学习FastAPI的原因有很多,比如其优秀的性能、简洁的代码结构、丰富的功能支持等。

       开始之前,确保你已经安装了Python和Pycharm,了解基本的Python编程知识,然后创建项目工程,安装环境,最后安装fastapi。

       在FastAPI中,你可以轻松地开启服务和接口访问,用json数据格式解析,生成在线API文档,发送POST请求,并使用各种请求格式。

       获取URL参数和请求头参数也十分简单,表单获取数据同样支持,自定义返回JSON、HTML、文件、HTML页面都可轻松实现。

       对于一些小案例,如代办事项,你可以在项目中添加相应的代码来实现。

       如果你想要与数据库交互,FastAPI也支持绑定数据库,通过tortoise-orm和aiomysql进行数据库访问和写入,确保数据正确无误。

       加入我们的技术交流群,获取更多资源,与来自各大名企的开发者交流互动。

       关注@Python与数据挖掘知乎账号和微信公众号,获取最新优质文章。

       推荐你浏览以下资源,提升你的Python编程技能:盘点个让工作效率倍增且有趣的Python库,如prettytable、推荐收藏!机器学习建模调参方法总结、推荐收藏!个机器学习最佳入门项目(附源代码)、没看完这 条,别说你精通Python装饰器、个VS Code神级插件、Schedule模块、Python周期任务神器、这4款数据自动化探索Python神器、个数据分析师必会的数据模型、真香啊!让Python编程起飞的个神操作、深度盘点:个用于深度学习、自然语言处理和计算机视觉的顶级Python、全网超详细!用户画像标签体系建设指南、机器学习模型验证,这3个Python包可轻松解决%的需求、精选个炫酷的可视化大屏模板、够强大!Python这款可视化大屏不足百行代码、深度盘点:字详细介绍Python中的7种交叉验证方法、精选字详细介绍Python中的7种交叉验证方法。

ONNX一本通:综述&使用&源码分析(持续更新)

       ONNX详解:功能概述、Python API应用与源码解析

       ONNX的核心功能集中在模型定义、算子操作、序列化与反序列化,以及模型验证上。它主要通过onnx-runtime实现运行时支持,包括图优化和平台特定的算子库。模型转换工具如tf、pytorch和mindspore的FMK工具包负责各自框架模型至ONNX的转换。

       ONNX Python API实战

       场景一:构建线性回归模型,基础操作演示了API的使用。

       场景二至四:包括为op添加常量参数、属性以及控制流(尽管控制流在正式模型中应尽量避免)。

       场景五和后续:涉及for循环和自定义算子的添加,如Cos算子,涉及算子定义、添加到算子集、Python实现等步骤。

       源码分析

       onnx.checker:负责模型和元素的检查,cpp代码中实现具体检查逻辑。

       onnx.compose、onnx.defs、onnx.helper等:提供模型构建、算子定义和辅助函数。

       onnx.numpy_helper:处理numpy数组与onnx tensor的转换。

       onnx.reference:提供Python实现的op推理功能。

       onnx.shape_inference:进行模型的形状推断。

       onnx.version_converter:处理不同op_set_version的转换。

       转换实践

       ONNX支持将tf、pytorch和mindspore的模型转换为ONNX格式,同时也有ONNX到TensorRT、MNN和MS-Lite等其他格式的转换选项。

       总结

       ONNX提供了一个统一的IR(中间表示)框架,通过Python API构建模型,支持算子定义的检查和模型的序列化。同时,它利用numpy实现基础算子,便于模型的正确性验证,并支持不同框架模型之间的转换。

Python C语言API教程(一、用C写一个Python包)

       Python的C语言API教程(一:实践入门)

       Python的C语言API在提升程序性能和实现跨平台适配方面发挥着关键作用。通过官方API,开发者可以直接操作Python解释器的底层,绕过Python的GIL限制,达到加速效果,如cython和codon等工具相比,C语言API更为直接有效。

       Python的C语言API还支持本地化适配,例如PyQT库,它根据操作系统和硬件调整图形界面。在机器学习框架TensorFlow这类需要底层优化和硬件适配的场景中,C语言API更是不可或缺。

       理解C语言API有助于深入学习CPython,因为Python的执行实际上就是调用C语言API。Python源码阅读者会发现,熟悉API有助于解析CPython的内部工作原理。

       要进行Python的C开发,首先需要配置环境。Windows用户需安装Visual Studio Build Tools,选择Python开发和C++桌面开发工作负荷。Mac/Linux用户则需安装Python开发包(如GCC)和调试工具(如Windows的Visual Studio自带工具或Mac/Linux的GDB)。

       接下来,我们将通过实例创建一个简单的Python扩展模块datetimecpy,模拟官方datetime模块。我们从编写Python调用代码开始,然后用C语言实现,包括头文件引入、定义now方法、注册方法、模块定义、以及将模块嵌入到Python解释器中。

       通过本章,你将掌握创建C扩展模块的基础步骤。在后续章节,我们将深入讲解PyObject对象及其在C语言API中的应用。

jenkins源代码管理+接入钉钉api发送接口自动化测试报告

       在进行接口自动化测试时,许多公司希望实现持续集成,并将测试报告自动发送到工作群,如钉钉。以下是一份详细的教程,教你如何在Jenkins上配置并接入钉钉API,发送测试报告。

        前提条件与准备

       首先,确保你已经有了自动化脚本,并已安装Git plugin插件,便于源代码管理。

        源代码管理与触发器

       获取Git凭证:在Jenkins中,使用/Eterance/doc...

       如何部署自己的文档网站,请参考相关教程。

文章所属分类:娱乐频道,点击进入>>