1.源码解析Spark中的码语Parquet高性能向量化读
2.Spark源码解析2-YarnCluster模式启动
3.spark sql源码系列 | json_tuple一定比 get_json_object更高效吗?
4.SPARK-38864 - Spark支持unpivot源码分析
5.Spark-Submit 源码剖析
6.Spark ML系列RandomForestClassifier RandomForestClassificationModel随机森林原理示例源码分析
源码解析Spark中的Parquet高性能向量化读
在Spark中,Parquet的码语高性能向量化读取是自2.0版本开始引入的特性。它与传统的码语逐行读取和解码不同,采用列式批处理方式,码语显著提升了列解码的码语速度,据Databricks测试,码语tomcar源码速度比非向量化版本快了9倍。码语本文将深入解析Spark的码语源码,揭示其如何支持向量化Parquet文件读取。码语
Spark的码语向量化读取主要依赖于ColumnBatch和ColumnVector数据结构。ColumnBatch是码语每次读取返回的批量数据容器,其中包含一个ColumnVectors数组,码语每个ColumnVector负责存储一批数据中某一列的码语所有值。这种设计使得数据可以按列进行高效访问,码语同时也提供按行的码语视图,通过InternalRow对象逐行处理。
在读取过程中,Spark通过VectorizedParquetRecordReader、VectorizedColumnReader和VectorizedValuesReader三个组件协同工作。VectorizedParquetRecordReader负责启动批量读取,它根据指定的批次大小和内存模式创建实例。VectorizedColumnReader和VectorizedValuesReader则负责实际的列值读取,根据列的类型和编码进行相应的解码处理。
值得注意的是,Spark在数据加载时会重复使用ColumnBatch和ColumnVector实例,以减少内存占用,wepapp聊天源码优化计算效率。ColumnVector支持堆内存和堆外内存,以适应不同的存储需求。通过这些优化,向量化读取在处理大型数据集时表现出色,尤其是在性能上。
然而,尽管Spark的向量化读取已经非常高效,Iceberg中的Parquet向量化读取可能更快,这可能涉及到Iceberg对Parquet文件的特定优化,或者其在数据处理流程中的其他改进,但具体原因需要进一步深入分析才能揭示。
Spark源码解析2-YarnCluster模式启动
YARN 模式运行机制主要体现在Yarn Cluster 模式和Yarn Client 模式上。在Yarn Cluster模式下,SparkSubmit、ApplicationMaster 和 CoarseGrainedExecutorBackend 是独立的进程,而Driver 是独立的线程;Executor 和 YarnClusterApplication 是对象。在Yarn Client模式下,SparkSubmit、ApplicationMaster 和 YarnCoarseGrainedExecutorBackend 也是独立的进程,而Executor和Driver是对象。
在源码中,SparkSubmit阶段首先执行Spark提交命令,底层执行的是开启SparkSubmit进程的命令。代码中,talend项目实例源码SparkSubmit从main()开始,根据运行模式获取后续要反射调用的类名赋给元组中的ChildMainClass。如果是Yarn Cluster模式,则为YarnClusterApplication;如果是Yarn Client模式,则为主类用户自定义的类。接下来,获取ChildMainClass后,通过反射调用main方法的过程,反射获取类然后通过构造器获取一个示例并多态为SparkApplication,再调用它的start方法。随后调用YarnClusterApplication的start方法。在YarnClient中,new一个Client对象,其中包含了yarnClient = YarnClient.createYarnClient属性,这是Yarn在SparkSubmit中的客户端,yarnClient在第行初始化和开始,即连接Yarn集群或RM。之后就可以通过这个客户端与Yarn的RM进行通信和提交应用,即调用run方法。
ApplicationMaster阶段主要涉及开启一个Driver新线程、AM向RM注册、AM向RM申请资源并处理、封装ExecutorBackend启动命令以及AM向NM通信提交命令由NM启动ExecutorBackend。在ApplicationMaster进程中,首先开启Driver线程,会说话tomjava源码开始运行用户自定义代码,创建Spark程序入口SparkContext,接着创建RDD,生成job,划分阶段提交Task等操作。
在申请资源之前,AM主线程创建了Driver的终端引用,作为参数传入createAllocator(),因为Executor启动后需要向Driver反向注册,所以启动过程必须封装Driver的EndpointRef。AM主线程向RM申请获取可用资源Container,并处理这些资源。ExecutorBackend阶段尚未完成,后续内容待补充。
spark sql源码系列 | json_tuple一定比 get_json_object更高效吗?
对比json_tuple和get_json_object,网上普遍认为json_tuple效率更高。理由是json_tuple仅需解析一次json数据,而get_json_object需多次解析。实际操作中,get_json_object在解析json字符串到jsonObject阶段仅执行一次,而非多次解析。从执行计划角度看,get_json_object更为简洁,而json_tuple涉及udtf函数,其执行计划更为繁重。倚天剑源码功能多样性上,get_json_object支持更丰富的路径处理,如正则匹配、嵌套、多层取值等,而json_tuple仅能解析第一层key。在实际使用时,无需盲从效率结论,根据具体需求选择。确保json数据不过长过大,无论使用哪种方法,效率都不会理想。正确理解并合理运用这些函数,对于优化查询性能至关重要。
SPARK- - Spark支持unpivot源码分析
unpivot是数据库系统中用于列转行的内置函数,如SQL SERVER, Oracle等。以数据集tb1为例,每个数字代表某个人在某个学科的成绩。若要将此表扩展为三元组,可使用union实现。但随列数增加,SQL语句变长。许多SQL引擎提供内置函数unpivot简化此过程。unpivot使用时需指定保留列、进行转行的列、新列名及值列名。
SPARK从SPARK-版本开始支持DataSet的unpivot函数,逐步扩展至pyspark与SQL。在Dataset API中,ids为要保留的Column数组,Column类提供了从String构造Column的隐式转换,方便使用。利用此API,可通过unpivot函数将数据集转换为所需的三元组。values表示转行列,variableColumnName为新列名,valueColumnName为值列名。
Analyser阶段解析unpivot算子,将逻辑执行计划转化为物理执行计划。当用户开启hive catalog,SPARK SQL根据表名和metastore URL查找表元数据,转化为Hive相关逻辑执行计划。物理执行计划如BroadcastHashJoinExec,表示具体的执行策略。规则ResolveUnpivot将包含unpivot的算子转换为Expand算子,在物理执行计划阶段执行。此转换由开发者自定义规则完成,通过遍历逻辑执行计划树,根据节点类型及状态进行不同处理。
unpivot函数实现过程中,首先将原始数据集投影为包含ids、variableColumnName、valueColumnName的列,实现语义转换。随后,通过map函数处理values列,构建新的行数据,最终返回Expand算子。在物理执行计划阶段,Expand算子将数据转换为所需形式,实现unpivot功能。
综上所述,SPARK内置函数unpivot的实现通过解析列参数,组装Expand算子完成,为用户提供简便的列转行功能。通过理解此过程,可深入掌握SPARK SQL的开发原理与内在机制。
Spark-Submit 源码剖析
直奔主题吧:
常规Spark提交任务脚本如下:
其中几个关键的参数:
再看下cluster.conf配置参数,如下:
spark-submit提交一个job到spark集群中,大致的经历三个过程:
代码总Main入口如下:
Main支持两种模式CLI:SparkSubmit;SparkClass
首先是checkArgument做参数校验
而sparksubmit则是通过buildCommand来创建
buildCommand核心是AbstractCommandBuilder类
继续往下剥洋葱AbstractCommandBuilder如下:
定义Spark命令创建的方法一个抽象类,SparkSubmitCommandBuilder刚好是实现类如下
SparkSubmit种类可以分为以上6种。SparkSubmitCommandBuilder有两个构造方法有参数和无参数:
有参数中根据参数传入拆分三种方式,然后通过OptionParser解析Args,构造参数创建对象后核心方法是通过buildCommand,而buildCommand又是通过buildSparkSubmitCommand来生成具体提交。
buildSparkSubmitCommand会返回List的命令集合,分为两个部分去创建此List,
第一个如下加入Driver_memory参数
第二个是通过buildSparkSubmitArgs方法构建的具体参数是MASTER,DEPLOY_MODE,FILES,CLASS等等,这些就和我们上面截图中是对应上的。是通过OptionParser方式获取到。
那么到这里的话buildCommand就生成了一个完成sparksubmit参数的命令List
而生成命令之后执行的任务开启点在org.apache.spark.deploy.SparkSubmit.scala
继续往下剥洋葱SparkSubmit.scala代码入口如下:
SparkSubmit,kill,request都支持,后两个方法知识支持standalone和Mesos集群方式下。dosubmit作为函数入口,其中第一步是初始化LOG,然后初始化解析参数涉及到类
SparkSubmitArguments作为参数初始化类,继承SparkSubmitArgumentsParser类
其中env是测试用的,参数解析如下,parse方法继承了SparkSubmitArgumentsParser解析函数查找 args 中设置的--选项和值并解析为 name 和 value ,如 --master yarn-client 会被解析为值为 --master 的 name 和值为 yarn-client 的 value 。
这之后调用SparkSubmitArguments#handle(MASTER, "yarn-client")进行处理。
这个函数也很简单,根据参数 opt 及 value,设置各个成员的值。接上例,parse 中调用 handle("--master", "yarn-client")后,在 handle 函数中,master 成员将被赋值为 yarn-client。
回到SparkSubmit.scala通过SparkSubmitArguments生成了args,然后调用action来匹配动作是submit,kill,request_status,print_version。
直接看submit的action,doRunMain执行入口
其中prepareSubmitEnvironment初始化环境变量该方法返回一个四元 Tuple ,分别表示子进程参数、子进程 classpath 列表、系统属性 map 、子进程 main 方法。完成了提交环境的准备工作之后,接下来就将启动子进程。
runMain则是执行入口,入参则是执行参数SparkSubmitArguments
Main执行非常的简单:几个核心步骤
先是打印一串日志(可忽略),然后是创建了loader是把依赖包jar全部导入到项目中
然后是MainClass的生成,异常处理是ClassNotFoundException和NoClassDeffoundError
再者是生成Application,根据MainClass生成APP,最后调用start执行
具体执行是SparkApplication.scala,那么继续往下剥~
仔细阅读下SparkApplication还是挺深的,所以打算另外写篇继续深入研读~
Spark ML系列RandomForestClassifier RandomForestClassificationModel随机森林原理示例源码分析
Spark ML中的集成学习工具RandomForestClassifier是强大的分类模型,它由多个决策树组成,每个树都是通过自助采样和特征随机选择训练得到的。 随机森林的特性包括:适用于大规模数据,能处理高维度特征,并对缺失数据和噪声有较强鲁棒性。
内置特征重要性评估,支持特征选择和分析。
利用并行构建提高训练速度。
然而,模型性能受决策树数量、树深和特征选择策略等因素影响,需根据具体问题调整参数以优化。 RandomForestClassifier在Spark ML中的应用涉及以下步骤:加载数据,创建特征向量。
处理标签,划分训练集和测试集。
创建模型实例,设置参数,并使用Pipeline进行训练。
在测试集上进行预测,评估模型,如使用多分类准确度。
代码实现包括RandomForestClassifier对象的定义,以及RandomForestClassificationModel类,用于模型的创建、训练和读取。