1.Hadoop 的源码 Lists.newArrayList和正常的 new ArrayList()有什么区别?
2.深入理解 Hadoop (七)YARN资源管理和调度详解
Hadoop 的 Lists.newArrayList和正常的 new ArrayList()有什么区别?
这个方法在google工具类中也有,源码内容如下public static <E> ArrayList<E> newArrayList() {return new ArrayList();
}
内容是分析差不多的,唯一的源码好处就是可以少写泛型的部分。
这个方法有着丰富的分析重载:
Lists.newArrayList(E... elements)Lists.newArrayList(Iterable<? extends E> elements)
Lists.newArrayList(Iterator<? extends E> elements)
还有很多前缀扩展方法:
List<T> exactly = Lists.newArrayListWithCapacity();List<T> approx = Lists.newArrayListWithExpectedSize();
使得函数名变得更有可读性,一眼就看出方法的源码作用。
但是分析cad 组件源码查看源码发现官方的注解里头是这么写的:
Creates a mutable, empty ArrayList instance (for Java 6 and earlier).
创建一个可变的空ArrayList(适用于java 6及之前的版本)
Note for Java 7 and later: this method is now unnecessary and should
be treated as deprecated. Instead, use the ArrayList constructor
directly, taking advantage of the new "diamond" syntax.
针对java 7及之后版本,本方法已不再有必要,源码应视之为过时的分析方法。取而代之你可以直接使用ArrayList的源码构造器,充分利用钻石运算符<>(可自动推断类型)。分析
深入理解 Hadoop (七)YARN资源管理和调度详解
Hadoop最初为批处理设计,源码其资源管理与调度仅支持FIFO机制。分析然而,源码随着Hadoop的分析普及与用户量的增加,单个集群内的源码应用程序类型与数量激增,FIFO调度机制难以高效利用资源,也无法满足不同应用的懂vue源码服务质量需求,故需设计适用于多用户的资源调度系统。
YARN采用双层资源调度模型:ResourceManager中的资源调度器分配资源给ApplicationMaster,由YARN决定;ApplicationMaster再将资源分配给内部任务Task,用户自定。YARN作为统一调度系统,满足调度规范的分布式应用皆可在其中运行,调度规范包括定义ApplicationMaster向RM申请资源,AM自行完成Container至Task分配。小号购买源码YARN采用拉模型实现异步资源分配,RM分配资源后暂存缓冲区,等待AM通过心跳获取。
Hadoop-2.x版本中YARN提供三种资源调度器,分别为...
YARN的队列管理机制包括用户权限管理与系统资源管理两部分。CapacityScheduler的核心特点包括...
YARN的更多理解请参考官方文档:...
在分布式资源调度系统中,资源分配保证机制常见有...
YARN采用增量资源分配,避免浪费但不会出现资源饿死现象。golang实现源码YARN默认资源分配算法为DefaultResourceCalculator,专注于内存调度。DRF算法将最大最小公平算法应用于主资源上,解决多维资源调度问题。实例分析中,系统中有9个CPU和GB RAM,两个用户分别运行两种任务,所需资源分别为...
资源抢占模型允许每个队列设定最小与最大资源量,cornernet lite源码以确保资源紧缺与极端情况下的需求。资源调度器在负载轻队列空闲时会暂时分配资源给负载重队列,仅在队列突然收到新提交应用程序时,调度器将资源归还给该队列,避免长时间等待。
YARN最初采用平级队列资源管理,新版本改用层级队列管理,优点包括...
CapacityScheduler配置文件capacity-scheduler.xml包含资源最低保证、使用上限与用户资源限制等参数。管理员修改配置文件后需运行"yarn rmadmin -refreshQueues"。
ResourceScheduler作为ResourceManager中的关键组件,负责资源管理和调度,采用可插拔策略设计。初始化、接收应用和资源调度等关键功能实现,RM收到NodeManager心跳信息后,向CapacityScheduler发送事件,调度器执行一系列操作。
CapacityScheduler源码解读涉及树型结构与深度优先遍历算法,以保证队列优先级。其核心方法包括...
在资源分配逻辑中,用户提交应用后,AM申请资源,资源表示为Container,包含优先级、资源量、容器数目等信息。YARN采用三级资源分配策略,按队列、应用与容器顺序分配空闲资源。
对比FairScheduler,二者均以队列为单位划分资源,支持资源最低保证、上限与用户限制。最大最小公平算法用于资源分配,确保资源公平性。
最大最小公平算法分配示意图展示了资源分配过程与公平性保证。
2025-01-18 17:37
2025-01-18 17:35
2025-01-18 16:31
2025-01-18 16:15
2025-01-18 15:33
2025-01-18 15:27
2025-01-18 15:20
2025-01-18 15:18