【php藏头诗源码】【php优秀架构源码】【rocketmq源码分析书籍】jieba 源码分析

时间:2025-01-04 11:52:51 编辑:狗粮朔源码 来源:doss攻击软件源码

1.深入剖析jieba分词机制
2.深入 Dify 源码,码分定位知识库检索的码分大模型调用异常
3.EDG夺冠!用Python分析22.3万条数据:粉丝都疯了!
4.jieba源码解析(一)——中文分词
5.如何利用python实现词频图?码分
6.Python 结巴分词(jieba)源码分析

jieba 源码分析

深入剖析jieba分词机制

       中文分词:打造最优Python中文词组划分模块。

       引言:采用清晰明了的码分解释方式,结合源码,码分深入解析Jieba分词的码分php藏头诗源码基本原理

       算法基本逻辑:构建全局前缀词典、建立有向无环图(DAG)

       以sentence="基坑支护施工"为例,码分首先构建前缀词典,码分初始化并建立jieba自带词典、码分前缀词典和用户词典,码分注意词典中包含"4S店"时,码分前缀词典会生成"4"、码分"4S"、码分"4S店"。码分接着构建待分词语句的码分DAG图,通过两层循环判断当前词汇是否在前缀词典中,以实现分词有向无环图的建立。

       动态规划选取最大词频路径:计算可能性最大的路径,使用动态规划算法找出基于词频的最大切分组合。

       公式描述:其中,每条路径的概率计算基于词在前缀词典里的词频与所有词的词频之和的比值。如果词频为0或不存在,则视为词频为1。取对数概率,通过相加计算替代相乘,以防止下溢。

       未登录词优化:对于未登录词,采用基于汉字成词能力的HMM模型,通过Viterbi算法优化分词结果。

       总结:Jieba分词通过构建全局前缀词典、构建有向无环图、动态规划选取最大词频路径和优化未登录词,实现了高效、准确的中文文本划分,满足不同领域专业词汇的分词需求。

深入 Dify 源码,定位知识库检索的大模型调用异常

       深入分析Dify源码:大模型调用异常定位

       在使用Dify服务与Xinference的THUDM/glm-4-9b-chat模型部署时,遇到了知识库检索节点执行时报错大模型GPT3.5不存在的问题。异常出乎意料,因为没有额外信息可供进一步定位。

       通过源码和服务API调用链路的分析,我们发现问题的关键在于知识库检索的实现。该功能在api/core/rag/datasource/retrieval_service.py中,php优秀架构源码其中混合检索由向量检索和全文检索组成。我们关注了关键词检索、向量检索和全文检索这三个基础检索方式:

       关键词检索:仅使用jieba进行关键词提取,无大模型介入。

       向量检索:通过向量库直接搜索,如Milvus,无大模型调用。

       全文检索:使用BM,大部分向量库不支持,实际操作中返回空列表。

       问题出现在知识库检索节点的多知识库召回判断中,N选1召回模式会调用大模型以决定知识库。在配置环节,前端HTTP请求显示配置错误,使用了不存在的GPT3.5模型。

       经测试,手工创建的知识库检索节点使用了正确的glm-4-9b-chat模型,问题出在默认模板的配置上,即N选1召回模式默认选择了GPT3.5。本地部署时,如果没有配置相应模型,会导致错误出现。

       总结来说,解决方法是修改默认模板,将知识库检索的默认模式改为多路召回,这样可以避免新手在本地部署时遇到困扰。建议Dify官方在模板中改进这一设置,以简化用户部署流程。

EDG夺冠!用Python分析.3万条数据:粉丝都疯了!

       EDG夺冠信息

       在月6日的英雄联盟总决赛中,EDG战队以3:2战胜韩国队,摘得年英雄联盟全球总决赛的冠军,这一盛事在全网各大平台引人瞩目。

       微博排名榜首,截至月日,观看量已达到亿级,粉丝数增长至.4万。Bilibili平台上人气几亿,总弹幕数为.3万,全站排行榜最高第2名,粉丝数量已有.9万。腾讯、rocketmq源码分析书籍爱奇艺、优酷等视频平台,万人观看了比赛。虎牙等直播平台热度也居高不下。央视新闻也通过微博庆祝EDG夺冠。

       既然比赛热度如此之高,我们以Bilibili为基准,通过采集EDG夺冠比赛视频在该平台的.3万条弹幕数据,利用Python进行分析,以感受粉丝的热情。

       实战目标

       1. 利用爬虫技术抓取B站夺冠比赛视频的.3万条弹幕数据。

       2. 利用jieba、numpy等Python库对弹幕数据进行分析,并实现可视化。

       bilibili接口分析

       进入EDG夺冠比赛视频的URL,B站已整理了7个视频,覆盖从开幕式到夺冠全过程。B站弹幕数据接口为api.bilibili.com/x/v1/d...,通过oid请求相应视频弹幕的API接口,抓取弹幕数据。

       获取oid

       使用开发者工具的Network选项,找到以pagelist开头的请求接口,打开新窗口直接请求,获取JSON格式数据中的cid作为oid。

       编码定义获取cid的方法

       通过控制台输出拼接弹幕数据API接口,获取7个比赛视频的弹幕数据。使用正则表达式抓取数据,代码实现弹幕数据的抓取。

       避免乱码处理

       代码中加入处理乱码的步骤,确保数据正确解析。展示抓取的EDG.txt部分弹幕数据。

       词云图制作

       利用EDG背景图制作词云图,代码实现词云图的生成。也可以尝试制作迪迦奥特曼主题的词云图,或者使用pyecharts/echarts等库制作。

       总结

       使用PIL、jieba、numpy、requests、wordcloud、matplotlib等库进行数据分析和可视化,实现弹幕数据的renci.sshnet源码高效处理。

       完整项目及源码下载

       完整项目和源码的获取方式在文末提供。

jieba源码解析(一)——中文分词

       全模式解析:

       全模式下的中文分词通过构建字典树和DAG实现。首先加载字典,字典树中记录词频,例如词"不拘一格"在字典树中表示为{ "不" : 0, "不拘" : 0, "不拘一" : 0, "不拘一格" : freq}。接着构造DAG,表示连续词段的起始位置。例如句子'我来到北京清华大学',分词过程如下:

       1. '我':字典树中key=0,尝试'我来',不在字典,结束位置0寻找可能的分词,DAG为 { 0:[0]}。

       2. '来':字典树中key=1,尝试'来到',在字典,继续尝试'来到北',不在字典,结束位置1寻找可能的分词,DAG为 { 0:[0], 1:[1]}。

       3. '到':字典树中key=2,尝试'来到北',不在字典,结束位置2寻找可能的分词,DAG为 { 0:[0], 1:[1], 2:[2]}。

       4. 以此类推,最终形成所有可能分词结果:我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学。

       全模式的关键代码涉及字典树和DAG的构建与使用。

       精确模式与HMM模式解析:

       精确模式与HMM模式对句子'我来到北京清华大学'的分词结果分别为:

       精确模式:'我'/'来到'/'北京'/'清华大学'

       HMM模式:'我'/'来到'/'了'/'北京'/'清华大学'

       HMM模式解决了发现新词的问题。解析过程分为三个步骤:

       1. 生成所有可能的分词。

       2. 生成每个key认为最好的分词。

       3. 按照步骤2的方式对每个key的结果从前面向后组合,注意判断单字与下个单字是否可以组成新词。

       最后,解析结果为:我/ 来到/ 北京/ 清华/ 清华大学

       HMM模式中的Viterbi算法在jieba中用于发现新词。算法通过统计和概率计算,实现新词的发现与分词。

       具体应用中,HMM模型包含五个元素:隐含状态、可观测状态、初始状态概率矩阵、隐含状态转移概率矩阵、django 源码如何读观测状态转移概率矩阵。模型利用这些元素实现状态预测与概率计算,进而实现中文分词与新词发现。

       在Viterbi算法中,重要的是理解隐含状态、可观测状态、转移概率矩阵之间的关系,以及如何利用这些信息进行状态预测和概率计算。具体实现细节在代码中体现,包括字典树构建、DAG构造、概率矩阵应用等。

如何利用python实现词频图?

       在处理语言文本时,词频分析是一个常见任务,通常涉及将文本中的句子分解成单词,并根据词频进行排序。Python 提供了一个强大的工具库,jieba,来实现这一功能。

       首先,确保你已经正确安装了jieba库。有三种方式可以安装:

       1. **全自动安装**:使用命令`easy_install jieba`或`pip install jieba`或`pip3 install jieba`。

       2. **半自动安装**:下载源代码,解压缩后运行`python setup.py install`。

       3. **手动安装**:将jieba文件放置在当前目录或site-packages目录下。

       jieba库提供了几个主要的分词方法:

       - **jieba.cut**:接受四个参数:待分词的字符串、是否采用全模式、是否使用HMM模型、是否使用paddle模式。默认返回生成器,可通过`list`转换为列表或使用`jieba.lcut`方法。

       - **jieba.cut_for_search**:与`cut`类似,但更适合搜索引擎构建倒排索引,粒度更细。同样返回生成器,可通过`list`或`jieba.lcut_for_search`方法获取列表。

       - **jieba.Tokenizer**:用于创建自定义分词器,允许同时使用不同词典,使用默认词典`jieba.dt`。

       分词示例如下:

       输出:

       建立前缀字典从默认字典... 加载模型从缓存 C:\Users\FURONG~1\AppData\Local\Temp\jieba.cache 加载模型耗时 0. 秒。成功建立前缀字典。Paddle 模式:我/来到/北京/清华大学 Paddle 模式:乒乓球/拍卖/完/了 Paddle 模式:中国/科学技术/大学 全模式:我/来到/北京/清华大学 他, 来到, 了, 网易, 杭研, 大厦 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, ,, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造

       可以加载自定义词典,格式与`dict.txt`(jieba库安装时自带的词典)相同,一个词占一行,每行分三部分。更改分词器的`tmp_dir`和`cache_file`属性,可以指定缓存文件所在的文件夹和文件名,用于受限的文件系统。加载自定义词典示例和动态修改词典的`add_word`、`del_word`方法。

       词性标注示例如下:

       我 r 爱 v 北京 ns 天安门 ns

       词性和专名类别标签如下表,其中词性标签个(小写字母),专名类别标签4个(大写字母):

       接下来,以小说判官.txt为例进行实例分析,以识别人物、名词、地名,对小说有初步了解。以下是分词代码、按词频排序、制作柱图和词云图的步骤。

       人物部分:

       序号 词性 词频 柱图 1 闻时 ------------------------------ 2 谢问 ----------------------- ...

       名词部分:

       序号 词性 词频 柱图 1 时候 ------------------------------ 2 有点 ----------------- ...

       地名部分:

       序号 词性 词频 柱图 1 夏樵 ------------------------------ 2 东西 -------------------- ...

       完整代码如下,详细说明请参考jieba官方文档和示例代码。

Python 结巴分词(jieba)源码分析

       本文深入分析Python结巴分词(jieba)的源码,旨在揭示其算法实现细节与设计思路,以期对自然语言处理领域感兴趣的朋友提供有价值的参考。经过两周的细致研究,作者整理了分词算法、实现方案及关键文件结构的解析,以供读者深入理解结巴分词的底层逻辑。

       首先,分词算法涉及的核心技术包括基于Trie树结构的高效词图扫描、动态规划查找最大概率路径和基于HMM模型的未登录词处理。Trie树用于生成句子中所有可能成词情况的有向无环图(DAG),动态规划则帮助在词频基础上寻找到最优切分组合,而HMM模型则通过Viterbi算法处理未在词库中出现的词语,确保分词的准确性和全面性。

       在结巴分词的文件结构中,作者详细介绍了各个关键文件的功能与内容。dict.txt作为词库,记录着词频与词性信息;__init__.py则是核心功能的入口,提供了分词接口cut,支持全模式、精确模式以及结合最大概率路径与HMM模型的综合模式。全模式下,会生成所有可能的词组合;精确模式通过最大概率路径确定最优分词;综合模式则同时考虑概率与未登录词,以提高分词效果。

       实现细节方面,文章通过实例代码解释了全模式、精确模式及综合模式的分词逻辑。全模式直接输出所有词组合;精确模式基于词频和最大概率路径策略,高效识别最优分词;综合模式利用HMM模型处理未登录词,进一步提升分词准确度。通过生成的DAG图,直观展示了分词过程。

       结巴分词的代码实现简洁而高效,通过巧妙的算法设计和数据结构应用,展示了自然语言处理技术在实际应用中的强大能力。通过对分词算法的深入解析,不仅有助于理解结巴分词的功能实现,也为自然语言处理领域的研究与实践提供了宝贵的洞察。

利用Python爬虫爬取淘宝商品做数据挖掘分析实战篇,超详细教程

       项目内容

       案例选择商品类目:沙发;数量:共页个商品;筛选条件:天猫、销量从高到低、价格元以上。

       以下是分析,源码点击文末链接

       项目目的

       1. 对商品标题进行文本分析,词云可视化。

       2. 不同关键词word对应的sales统计分析。

       3. 商品的价格分布情况分析。

       4. 商品的销量分布情况分析。

       5. 不同价格区间的商品的平均销量分布。

       6. 商品价格对销量的影响分析。

       7. 商品价格对销售额的影响分析。

       8. 不同省份或城市的商品数量分布。

       9. 不同省份的商品平均销量分布。

       注:本项目仅以以上几项分析为例。

       项目步骤

       1. 数据采集:Python爬取淘宝网商品数据。

       2. 数据清洗和处理。

       3. 文本分析:jieba分词、wordcloud可视化。

       4. 数据柱形图可视化barh。

       5. 数据直方图可视化hist。

       6. 数据散点图可视化scatter。

       7. 数据回归分析可视化regplot。

       工具&模块:

       工具:本案例代码编辑工具Anaconda的Spyder。

       模块:requests、retrying、missingno、jieba、matplotlib、wordcloud、imread、seaborn等。

       原代码和相关文档后台回复“淘宝”下载。

       一、爬取数据

       因淘宝网是反爬虫的,虽然使用多线程、修改headers参数,但仍然不能保证每次%爬取,所以,我增加了循环爬取,直至所有页爬取成功停止。

       说明:淘宝商品页为JSON格式,这里使用正则表达式进行解析。

       代码如下:

       二、数据清洗、处理:

       (此步骤也可以在Excel中完成,再读入数据)

       代码如下:

       说明:根据需求,本案例中只取了item_loc、raw_title、view_price、view_sales这4列数据,主要对标题、区域、价格、销量进行分析。

       代码如下:

       三、数据挖掘与分析:

       1. 对raw_title列标题进行文本分析:

       使用结巴分词器,安装模块pip install jieba。

       对title_s(list of list格式)中的每个list的元素(str)进行过滤,剔除不需要的词语,即把停用词表stopwords中有的词语都剔除掉:

       为了准确性,这里对过滤后的数据title_clean中的每个list的元素进行去重,即每个标题被分割后的词语唯一。

       观察word_count表中的词语,发现jieba默认的词典无法满足需求。

       有的词语(如可拆洗、不可拆洗等)却被cut,这里根据需求对词典加入新词(也可以直接在词典dict.txt里面增删,然后载入修改过的dict.txt)。

       词云可视化:

       安装模块wordcloud。

       方法1:pip install wordcloud。

       方法2:下载Packages安装:pip install 软件包名称。

       软件包下载地址:lfd.uci.edu/~gohlke/pyt...

       注意:要把下载的软件包放在Python安装路径下。

       代码如下:

       分析

       1. 组合、整装商品占比很高;

       2. 从沙发材质看:布艺沙发占比很高,比皮艺沙发多;

       3. 从沙发风格看:简约风格最多,北欧风次之,其他风格排名依次是美式、中式、日式、法式等;

       4. 从户型看:小户型占比最高、大小户型次之,大户型最少。

       2. 不同关键词word对应的sales之和的统计分析:

       (说明:例如词语‘简约’,则统计商品标题中含有‘简约’一词的商品的销量之和,即求出具有‘简约’风格的商品销量之和)

       代码如下:

       对表df_word_sum中的word和w_s_sum两列数据进行可视化。

       (本例中取销量排名前的词语进行绘图)

       由图表可知:

       1. 组合商品销量最高;

       2. 从品类看:布艺沙发销量很高,远超过皮艺沙发;

       3. 从户型看:小户型沙发销量最高,大小户型次之,大户型销量最少;

       4. 从风格看:简约风销量最高,北欧风次之,其他依次是中式、美式、日式等;

       5. 可拆洗、转角类沙发销量可观,也是颇受消费者青睐的。

       3. 商品的价格分布情况分析:

       分析发现,有一些值太大,为了使可视化效果更加直观,这里我们选择价格小于的商品。

       代码如下:

       由图表可知:

       1. 商品数量随着价格总体呈现下降阶梯形势,价格越高,在售的商品越少;

       2. 低价位商品居多,价格在-之间的商品最多,-之间的次之,价格1万以上的商品较少;

       3. 价格1万元以上的商品,在售商品数量差异不大。

       4. 商品的销量分布情况分析:

       同样,为了使可视化效果更加直观,这里我们选择销量大于的商品。

       代码如下:

       由图表及数据可知:

       1. 销量以上的商品仅占3.4%,其中销量-之间的商品最多,-之间的次之;

       2. 销量-之间,商品的数量随着销量呈现下降趋势,且趋势陡峭,低销量商品居多;

       3. 销量以上的商品很少。

       5. 不同价格区间的商品的平均销量分布:

       代码如下:

       由图表可知:

       1. 价格在-之间的商品平均销量最高,-之间的次之,元以上的最低;

       2. 总体呈现先增后减的趋势,但最高峰处于相对低价位阶段;

       3. 说明广大消费者对购买沙发的需求更多处于低价位阶段,在元以上价位越高平均销量基本是越少。

       6. 商品价格对销量的影响分析:

       同上,为了使可视化效果更加直观,这里我们选择价格小于的商品。

       代码如下:

       由图表可知:

       1. 总体趋势:随着商品价格增多其销量减少,商品价格对其销量影响很大;

       2. 价格-之间的少数商品销量冲的很高,价格-之间的商品多数销量偏低,少数相对较高,但价格以上的商品销量均很低,没有销量突出的商品。

       7. 商品价格对销售额的影响分析:

       代码如下:

       由图表可知:

       1. 总体趋势:由线性回归拟合线可以看出,商品销售额随着价格增长呈现上升趋势;

       2. 多数商品的价格偏低,销售额也偏低;

       3. 价格在0-的商品只有少数销售额较高,价格2万-6万的商品只有3个销售额较高,价格6-万的商品有1个销售额很高,而且是最大值。

       8. 不同省份的商品数量分布:

       代码如下:

       由图表可知:

       1. 广东的最多,上海次之,江苏第三,尤其是广东的数量远超过江苏、浙江、上海等地,说明在沙发这个子类目,广东的店铺占主导地位;

       2. 江浙沪等地的数量差异不大,基本相当。

       9. 不同省份的商品平均销量分布:

       代码如下:

       热力型地图

       源码:Python爬取淘宝商品数据挖掘分析实战

搜索关键词:c2c加价购商城源码