1.dreamweaver 如何批量替换源代码文件
2.一键自动修改和翻新OC源码,自动自动解决苹果审核4.3和马甲问题
3.Python数据分析实战-对DataFrame(Excel)某列的替换替换数值进行替换操作(附源码和实现效果)
dreamweaver 如何批量替换源代码文件
正则表达式不能提取文件名作为变量,可以试试VBS:
sFolder = "."
Set oFSO = CreateObject("Scripting.FileSystemObject")
Set oFolder= oFSO.GetFolder(sFolder)
Set colFiles = oFolder.Files
For Each oFile in colFiles
If Lcase(oFSO.GetExtensionName(oFile)) = "html" The源码源码n
oName = Split(oFile.Name,".")(0)
Set sFile = oFSO.OpenTextFile(oFile, 1)
colLines = sFile.ReadAll
sFile.Close
aryLines = Replace(colLines, "1.jpg", oName & ".jpg")
Set dtFile = oFSO.OpenTextFile(oFile, 2)
dtFile.Write aryLines
dtFile.Close
End If
Next
Set oFSO = Nothing
代码假设文件在同级文件夹,保存为VBS文件放到HTML文件夹,设置双击执行。自动自动如果不在同级文件夹,替换替换java dateformat 源码HI我以作修改。源码源码
一键自动修改和翻新OC源码,设置解决苹果审核4.3和马甲问题
自动修改/翻新/混淆/OC/iOS代码,自动自动自动替换类名,替换替换方法名
由来
网上有很多关于如何混淆iOS源码的源码源码方法,但是设置都不够智能,生成的自动自动方法类名要么千奇百怪,要么aaaabbbxxx这种完全毫无意义的替换替换writesampledata源码名称,要么只能修改单个文件,源码源码多个文件根本无法关联,我就想有什么方法可以像真人一样去修改源码,符合语义,不是胡编烂造的方法名,还可以自动修改相关联的文件, 还能自己自定义单词库,于是就有了这个工具。
演示视频
划重点
1. 该工具可以让你一键翻新代码,但是不是生成完整的xcode项目,需要你自己新建一个xcode项目,然后把翻新的文件拖入到新的项目中。
2. 该工具只要是ipa都可以,不限制OC,proactor源码Swift,Flutter,React Native,H5类app。
3.目前免费使用,免费使用,免费使用,重要的事情说三遍
几个效果展示
使用说明
下载项目,官网下载:IpaGuard官网--IOS 应用程序ipa文件混淆加密保护工具注意:说明中提到的路径均为绝对路径,提到的逗号,都为英文逗号。使用工具运行成功后,需要自己新建OC项目再将修改后的代码与资源文件拖入新建的工程。功能说明:
未来可能添加的elk源码功能:说明文档会不定期更新,如遇到问题先检查是否依照说明文档的定义进行配置。
1. 源文件路径/import_path(必选)
OC项目文件路径包含代码文件与资源文件
如下图
2. 导出路径/export_path(必选)
OC项目导出路径。
注意,本工具并不能帮你生成完整的OC项目,只会生成OC代码文件和复制修改项目内部的资源
3. 直接复制的路径/copy_only_pathes(可选)
直接复制,忽略的文件名,多个路径以,逗号隔开
4. 直接复制的文件名(不包含后缀)/copy_only_names(可选)
直接复制,忽略的文件名,不包含后缀
例:UISheetView.h 只需要输入UISheetView,多个文件用, 逗号隔开(注意全半角,逗号为英文逗号)
5. 不进行修改的文件或文件夹/no_change_pathes(可选)
深度读取,但是不会进行更改,如果引入了其他修改了的banner 源码类,会相应的修改深度读取(说明):会读取文件内部的类比与项目内其他类进行关联例:xxxx/Classes/Models 不想修改,则输入这个文件夹的绝对路径, 如只输入Models,则所有包含名为Models的文件或文件夹都会标记为只读取不修改,多个文件和类用, 逗号隔开(注意全半角,逗号为英文逗号)
6. 不修改的文件或类的前缀名(区分大小写)/no_change_class_prefix_names(可选)
例:不想所有以MJ开头的类或文件,则输入MJ, 多个文件和类用,逗号隔开(注意全半角,逗号为英文逗号)
7. 不修改的文件后缀名(区分大小写)/no_change_class_prefix_names(可选)
如第六条。Model,Info -->不修改以Model,Info为结尾的文件或类
8. 只修改类名的文件名或类名/only_change_clsname_names(可选)
深度读取,只修改类名,不修改内部属性与方法,这个优先级最低,如果之前的条件包含了本参数中的路径,则不生效
9. 只修改类名的文件夹/文件路径/only_change_clsname_pathes(可选)
深度读取,只修改类名,不修改内部属性与方法的文件名,这个优先级最低,如果之前的条件包含了本参数中的路径 则不生效
. 动词词库路径/verbwords_path(可选)
提供单词数组json文件路径 修改的命名逻辑为ABAB型,A为动词,B为名词,例:getMessage
. 名词词库路径/nounwords_path(可选)
提供单词数组json文件路径 修改的命名逻辑为ABAB型,A为动词,B为名词,例:getMessage
. 类名前缀/class_prefix(可选)
给每个类添加的前缀例:MJExtension-> MJ 为前缀, SD_ScrollView-> SD_ 为前缀
. 属性名前缀/property_prefix(可选)
给每个属性添加的前缀例:property(nonatomic, strong) UIViewMJView-> MJ 为前缀, property(nonatomic, strong) UIView SD_View-> SD_ 为前缀
. 需要过滤的方法路径/filter_methods_path(可选)
把你需要过滤的方法写入一个文本文件,然后将该文本路径填入到此项输入框注意事项:其他说明:本工具已经过滤了大多数常用系统方法,大部分情况下不需要配置此项。
. 类名和属性名后缀路径/property_subfix_path(可选)
给每个属性添加的后缀,需要一个配置json文件路径json格式:注意:key一定要与上面一直,否则系统无法读取,工具会遍历数组,为对应的类匹配后缀,在配置改文件时,包含相同字符串的类,需要将类名更长的类放在前面,不然匹配结果会达不到预期。例如:UITableView与UIView,配置时需要将UITableView放在View之前,如上面的例子。
. 为方法名添加介词/add_preposition(可选)
工具内置了所有介词,可选择性添加例:getMessage添加介词后-> getAMessage or getTheMessage具体介词完全随机添加
. 修改分类/change_category(可选)
工具会自动识别分类,可选择是否修改
. 将原代码行作为注释写入/add_original_comments(可选)
由于本工具不保证修改后百分百不报错,将修改过原属性声明和方法名作为注释写入,方便在重建工程后报错与原工程进行对照,建议设置
. 修改方法内部局部变量名/change_local_property(可选)
定义在方法内部的局部变量,可选择是否修改
. 综合配置路径(可选)
json配置文件路径,内部必须为字典,key为说明条目标题后面的英文请注意:配置文件优先级高于输入框输入的规则,配置文件存在时, 输入框输入的配置不生效例:(可直接复制修改)
关于bug
虽然工具本身经过了完整的商业项目的考验,但由于每个人的代码风格不一样,工具不可避免会出现解析不了的情况,开发者建议过滤C语言的文件,与第三方库,减少出错的可能性,还是无法运行成功,你可以发isssue至客服邮箱或根据报错Log自行删减项目文件,其中利弊,自行斟酌。
Python数据分析实战-对DataFrame(Excel)某列的数值进行替换操作(附源码和实现效果)
实现功能:
本文将展示如何在Python中使用pandas库对DataFrame(Excel)中的某列数值进行替换操作,并提供相关源码和实现效果,旨在帮助您掌握数据处理技巧。
代码分为以下两种情况:
1、将A列的数值进行直接替换,例如将A列中的1替换为,3替换为,4替换为
代码示例:
python
import pandas as pd
# 加载Excel文件
df = pd.read_excel('data.xlsx')
# 直接替换A列数值
df['A'] = df['A'].replace({ 1:, 3:, 4:})
# 保存替换后数据
df.to_excel('updated_data.xlsx', index=False)
2、将A列的数值进行替换为新的数值(新建新的一列),例如新建E列,将A列中替换为1
代码示例:
python
import pandas as pd
# 加载Excel文件
df = pd.read_excel('data.xlsx')
# 创建新列并替换A列数值
df['E'] = df['A'].replace({ :1})
# 保存替换后数据
df.to_excel('updated_data.xlsx', index=False)
实现效果:
上述代码执行后,将对原始数据文件进行处理,将指定列的特定数值替换为新的数值,并生成更新后的数据文件。通过替换操作,您可以快速调整数据,满足数据分析和处理需求。