1.线ç¨å®å
¨çlistä¹synchronizedListåCopyOnWriteArrayList
2.深入理解 Python 虚拟机:列表(list)的源码实现原理及源码剖析
3.STL容器—list使用技巧
4.gdb文件清单
5.Hadoop 的 Lists.newArrayList和正常的 new ArrayList()有什么区别?
线ç¨å®å ¨çlistä¹synchronizedListåCopyOnWriteArrayList
å¨ä¸ç¯æç« ä¸æ们已ç»ä»ç»äºå ¶ä»çä¸äºlistéåï¼å¦ArrayListãlinkedlistçãä¸æ¸ æ¥çå¯ä»¥çä¸ä¸ç¯æç« /p/ab5bf7ä½æ¯åArrayListè¿äºä¼åºç°çº¿ç¨ä¸å®å ¨çé®é¢ï¼æ们该ææ ·è§£å³å¢ï¼æ¥ä¸æ¥å°±æ¯è¦ä»ç»æ们线ç¨å®å ¨çlistéåsynchronizedListåCopyOnWriteArrayListã
synchronizedListç使ç¨æ¹å¼ï¼
ä»ä¸é¢ç使ç¨æ¹å¼ä¸æ们å¯ä»¥çåºï¼synchronizedListæ¯å°Listéåä½ä¸ºåæ°æ¥å建çsynchronizedListéåã
synchronizedList为ä»ä¹æ¯çº¿ç¨å®å ¨çå¢ï¼
æ们å æ¥çä¸ä¸ä»çæºç ï¼
æ们大æ¦è´´äºä¸äºå¸¸ç¨æ¹æ³çæºç ï¼ä»ä¸é¢çæºç ä¸æ们å¯ä»¥çåºï¼å ¶å®synchronizedList线ç¨å®å ¨çåå æ¯å 为å®å ä¹å¨æ¯ä¸ªæ¹æ³ä¸é½ä½¿ç¨äºsynchronizedåæ¥éã
synchronizedListå®æ¹ææ¡£ä¸ç»åºç使ç¨æ¹å¼æ¯ä»¥ä¸æ¹å¼ï¼
å¨ä»¥ä¸æºç ä¸æ们å¯ä»¥çåºï¼å®æ¹ææ¡£æ¯å»ºè®®æ们å¨éåçæ¶åå éå¤ççãä½æ¯æ¢ç¶å é¨æ¹æ³ä»¥åå äºéï¼ä¸ºä»ä¹å¨éåçæ¶åè¿éè¦å éå¢ï¼æ们æ¥çä¸ä¸å®çéåæ¹æ³ï¼
ä»ä»¥ä¸æºç å¯ä»¥çåºï¼è½ç¶å é¨æ¹æ³ä¸å¤§é¨åé½å·²ç»å äºéï¼ä½æ¯iteratoræ¹æ³å´æ²¡æå éå¤çãé£ä¹å¦ææ们å¨éåçæ¶åä¸å éä¼å¯¼è´ä»ä¹é®é¢å¢ï¼
è¯æ³æ们å¨éåçæ¶åï¼ä¸å éçæ åµä¸ï¼å¦ææ¤æ¶æå ¶ä»çº¿ç¨å¯¹æ¤éåè¿è¡addæè removeæä½ï¼é£ä¹è¿ä¸ªæ¶åå°±ä¼å¯¼è´æ°æ®ä¸¢å¤±æè æ¯èæ°æ®çé®é¢ï¼æ以å¦ææ们对æ°æ®çè¦æ±è¾é«ï¼æ³è¦é¿å è¿æ¹é¢é®é¢çè¯ï¼å¨éåçæ¶åä¹éè¦å éè¿è¡å¤çã
ä½æ¯æ¢ç¶æ¯ä½¿ç¨synchronizedå éè¿è¡å¤ççï¼é£è¯å®é¿å ä¸äºä¸äºéå¼éãæ没ææçæ´å¥½çæ¹å¼å¢ï¼é£å°±æ¯æ们å¦ä¸ä¸ªä¸»è¦ç并åéåCopyOnWriteArrayListã
CopyOnWriteArrayListæ¯å¨æ§è¡ä¿®æ¹æä½æ¶ï¼copyä¸ä»½æ°çæ°ç»è¿è¡ç¸å ³çæä½ï¼å¨æ§è¡å®ä¿®æ¹æä½åå°åæ¥éåæåæ°çéåæ¥å®æä¿®æ¹æä½ãå ·ä½æºç å¦ä¸ï¼
ä»ä»¥ä¸æºç æ们å¯ä»¥çåºï¼å®å¨æ§è¡addæ¹æ³åremoveæ¹æ³çæ¶åï¼åå«å建äºä¸ä¸ªå½åæ°ç»é¿åº¦+1å-1çæ°ç»ï¼å°æ°æ®copyå°æ°æ°ç»ä¸ï¼ç¶åæ§è¡ä¿®æ¹æä½ãä¿®æ¹å®ä¹åè°ç¨setArrayæ¹æ³æ¥æåæ°çæ°ç»ãå¨æ´ä¸ªè¿ç¨ä¸æ¯ä½¿ç¨ReentrantLockå¯éå ¥éæ¥ä¿è¯ä¸ä¼æå¤ä¸ªçº¿ç¨åæ¶copyä¸ä¸ªæ°çæ°ç»ï¼ä»èé æçæ··ä¹±ã并ä¸ä½¿ç¨volatile修饰æ°ç»æ¥ä¿è¯ä¿®æ¹åçå¯è§æ§ã读åæä½äºä¸å½±åï¼æ以å¨æ´ä¸ªè¿ç¨ä¸æ´ä¸ªæçæ¯é常é«çã
synchronizedListéå对æ°æ®è¦æ±è¾é«çæ åµï¼ä½æ¯å 为读åå ¨é½å éï¼æææçè¾ä½ã
CopyOnWriteArrayListæçè¾é«ï¼éå读å¤åå°çåºæ¯ï¼å 为å¨è¯»çæ¶å读çæ¯æ§éåï¼æ以å®çå®æ¶æ§ä¸é«ã
深入理解 Python 虚拟机:列表(list)的实现原理及源码剖析
深入理解 Python 虚拟机:列表(list)的实现原理及源码剖析
在 Python 虚拟机中,列表作为基本数据类型之一,查询能够存储各种类型的源码数据并支持多种操作。本文将详细解析列表在 cpython 实现中的查询结构和关键操作的源代码。
列表结构解析
在 cpython 实现中,源码列表由一系列元素构成,查询android xutils源码每个元素由一个指针指向 Python 对象。源码列表还包含一个表示元素数量的查询字段,一个用于存储列表长度的源码字段,以及一个用于存储对象引用计数的查询字段。
创建和扩容机制
创建列表时,源码不会直接分配内存,查询而是源码将需要释放的内存地址保存在数组中,以便下次创建列表时复用。查询列表扩容时,源码.net分词算法源码通过检查当前容量并相应地增加,以适应新添加的元素。
插入和删除操作
插入元素时,将插入位置及其后元素后移一位。删除元素时,将后续元素前移,直至空位。
复制操作
列表复制分为浅拷贝和深拷贝。浅拷贝仅复制对象的指针,改变原始列表中的元素会影响复制后的列表。深拷贝则复制对象及其内部内容,确保复制后的列表独立于原始列表。
列表清理和反转
清空列表时,将元素数量字段设置为零,android 安装 机器源码并减少所有对象的引用计数,以便在计数为零时自动释放内存。反转列表使用交换元素指针实现,不改变元素值。
总结
本文深入介绍了 Python 列表的内部实现,包括创建、扩容、插入、删除、复制、清理和反转等操作的源代码。理解这些细节有助于更高效地编写 Python 代码并深入掌握 Python 的内部机制。
STL容器—list使用技巧
列表容器(list)在STL中是一种序列容器,特点是linux下载github源码非连续内存分配。对比vector,其查找操作通常较慢,但插入和删除操作速度较快。列表通常实现为双向链表,这为实现单链表提供了便利。通过双向链接,可在常数时间内进行插入和删除操作,但查找操作需遍历整个列表,时间复杂度为O(n)。
查看上图,可了解std::list在内存中的布局,列表中的元素通过双向链接结点存储,每个结点包含数据和指向前后结点的指针。
列表的qq登录页面源码查找操作耗时,一旦找到元素,后续操作如更新、插入或删除则为常数时间复杂度。从性能角度看,list并不总是最佳选择,但在某些场景下仍具有优势。
以下代码展示了如何使用list进行内存分配测试,结果显示list的内存分配与vector不同,不会在插入元素时进行内存重新分配和数据拷贝。
清理list内存通常较为复杂。std::list自身并未提供内存释放接口,且标准库不保证立即释放内存。只有vector和string容器支持类似std::vector的swap函数,以在清理内存时立即释放空间。例如,chromium.org源代码中的stl_util.h文件中的清理代码仅适用于vector和string。
尽管在多数情况下std::list似乎并不突出,它在某些特定场景中仍具有用武之地。例如,当需要频繁插入和删除元素,而访问元素的顺序不固定时,list可能是更优选择。此外,当处理大量数据且内存使用效率是关键因素时,list的特性也能带来优势。因此,在权衡效率和特定需求后,list仍值得在编程实践中考虑。
gdb文件清单
在使用gdb进行调试时,`list`命令是查找和显示源代码的关键工具。该命令提供了一种方便的方式来查看代码的特定部分,从而帮助理解程序的运行逻辑。 `list line1,line2`使用此命令可以查看指定行号的源代码。例如,如果你想要查看行1和行2的代码,只需在gdb提示符下输入该命令。 `list lineNum`会显示给定行号以及其前后的源代码。这使得开发者能够上下文化地理解特定行的上下文环境,特别是在处理复杂的循环或函数调用时。 `list +`和`list -`分别用于显示当前行之后和之前的所有源代码行。这些命令非常有用,特别是在追踪变量状态或理解控制流时,无需手动跳行。 `list function`用于显示特定函数的完整源代码,这对于深入研究函数内部逻辑和调用栈非常有用。 `set listsize count`允许用户自定义每次`list`命令显示的源代码行数。这有助于在大型项目中更快地定位和理解相关代码段。 `show listsize`则显示当前设置的行数显示数量。这提供了灵活性,可以根据当前工作需要调整代码显示范围。 `list first,last`命令则允许开发者查看从一个行号到另一个行号之间的源代码。这对于查看特定范围内的代码流,或在调试特定区域时提供上下文,非常有帮助。 综上所述,`list`命令在gdb中扮演了核心角色,为开发者提供了一种高效且直观的方式来探索和理解程序的源代码。扩展资料
GDB是GNU开源组织发布的一个强大的UNIX下的程序调试工具。或许,各位比较喜欢那种图形界面方式的,像VC、BCB等IDE的调试,但如果你是在 UNIX平台下做软件,你会发现GDB这个调试工具有比VC、BCB的图形化调试器更强大的功能。所谓“寸有所长,尺有所短”就是这个道理。Hadoop 的 Lists.newArrayList和正常的 new ArrayList()有什么区别?
这个方法在google工具类中也有,源码内容如下public static <E> ArrayList<E> newArrayList() {return new ArrayList();
}
内容是差不多的,唯一的好处就是可以少写泛型的部分。
这个方法有着丰富的重载:
Lists.newArrayList(E... elements)Lists.newArrayList(Iterable<? extends E> elements)
Lists.newArrayList(Iterator<? extends E> elements)
还有很多前缀扩展方法:
List<T> exactly = Lists.newArrayListWithCapacity();List<T> approx = Lists.newArrayListWithExpectedSize();
使得函数名变得更有可读性,一眼就看出方法的作用。
但是查看源码发现官方的注解里头是这么写的:
Creates a mutable, empty ArrayList instance (for Java 6 and earlier).
创建一个可变的空ArrayList(适用于java 6及之前的版本)
Note for Java 7 and later: this method is now unnecessary and should
be treated as deprecated. Instead, use the ArrayList constructor
directly, taking advantage of the new "diamond" syntax.
针对java 7及之后版本,本方法已不再有必要,应视之为过时的方法。取而代之你可以直接使用ArrayList的构造器,充分利用钻石运算符<>(可自动推断类型)。