1.【手把手教你】搭建自己的示例量化分析数据库
2.ORM如何自己手写一个ORM框架
3.python微服务框架排行榜
4.Python - 一文入门Flask(Blueprint、SQLAlchemy部分)
5.使用PostgreSQL在Python中构建数据仓库
6.FastAPI工具集-SQLAlchemy会话
【手把手教你】搭建自己的源码源码量化分析数据库
量化交易的分析根基在于数据,包括股票历史交易数据、分析上市公司基本面数据、示例宏观和行业数据等。源码源码面对信息流量的分析vcp指标公式源码持续增长,掌握如何获取、示例查询和处理数据信息变得不可或缺。源码源码对于涉足量化交易的分析个体而言,对数据库操作的示例掌握更是基本技能。目前,源码源码MySQL、分析Postgresql、示例Mongodb、源码源码SQLite等开源数据库因其高使用量和受欢迎程度,分析位列-年DB-Engines排行榜前十。这几个数据库各有特点和适用场景。本文以Python操作Postgresql数据库为例,借助psycopg2和sqlalchemy实现与pandas dataframe的交互,一步步构建个人量化分析数据库。
首先,安装PostgreSQL。通过其官网下载适合操作系统的版本,按照默认设置完成安装。安装完成后,可以在安装目录中找到pgAdmin4,这是一个图形化工具,用于查看和管理PostgreSQL数据库,其最新版为Web应用程序。
接着,利用Python安装psycopg2和sqlalchemy库。psycopg2是连接PostgreSQL数据库的接口,sqlalchemy则适用于多种数据库,点阵取模源码特别是与pandas dataframe的交互更为便捷。通过pip安装这两个库即可。
实践操作中,使用tushare获取股票行情数据并保存至本地PostgreSQL数据库。通过psycopg2和sqlalchemy接口,实现数据的存储和管理。由于数据量庞大,通常分阶段下载,比如先下载特定时间段的数据,后续不断更新。
构建数据查询和可视化函数,用于分析和展示股价变化。比如查询股价日涨幅超过9.5%或跌幅超过-9.5%的个股数据分布,结合选股策略进行数据查询和提取。此外,使用日均线策略,开发数据查询和可视化函数,对选出的股票进行日K线、日均线、成交量、买入和卖出信号的可视化分析。
数据库操作涉及众多内容,本文着重介绍使用Python与PostgreSQL数据库的交互方式,逐步搭建个人量化分析数据库。虽然文中使用的数据量仅为百万条左右,使用Excel的csv文件读写速度较快且直观,但随着数据量的增长,建立完善的量化分析系统时,数据库学习变得尤为重要。重要的是,文中所展示的选股方式和股票代码仅作为示例应用,不构成任何投资建议。pb源码美容系统
对于Python金融量化感兴趣的读者,可以关注Python金融量化领域,通过知识星球获取更多资源,包括量化投资视频资料、公众号文章源码、量化投资分析框架,与博主直接交流,结识圈内朋友。
ORM如何自己手写一个ORM框架
本文将讨论如何构建一个ORM框架,并以cushy-storage磁盘缓存框架为例进行实现。ORM框架,即对象关系映射框架,允许程序员使用面向对象的方式操作数据库,简化了SQL语言的复杂性和繁琐性。
在Python中,如SQLAlchemy这样的流行ORM框架可以帮助轻松实现数据库的CRUD操作。使用ORM框架,开发者可以像操作本地对象一样操作数据库,从而提高了代码的可读性和维护性。
下面以安装SQLAlchemy为例,展示如何创建数据库表和进行基本操作。首先,通过命令安装SQLAlchemy。接着,定义表结构并执行CRUD操作。示例代码展示了使用ORM框架进行数据库操作的简易性。
编写一个完整的ORM框架需要深入理解数据库、Python编程以及设计模式。若希望深入了解,可参考如Django、SQLAlchemy、Peewee等优秀的易语言jpg源码开源ORM框架的源代码及文档。
本文将结合cushy-storage的功能,快速构建一个ORM框架,实现对本地文件数据的增删改查。cushy-storage是一个基于磁盘缓存的Python库,简化了数据存储和读取的过程。
实现的主要功能包括:存储、检索、更新和删除自定义对象。通过继承BaseORMModel类,自定义类可以轻松实现ORM功能。CushyOrmCache类继承CushyDict,并结合ORM功能,实现对象级数据的高效管理。
构建QuerySet类,提供更丰富的查询功能,如条件筛选、返回所有数据、返回第一个数据等。最后,通过ORMMixin实现增删改查功能,CushyORMCache类提供完整的ORM框架接口。
使用CushyORMCache,开发者可以方便地进行对象级数据的增删改查操作。下面的示例展示了如何构建用户系统并使用CushyORMCache进行操作。
完整实现代码展示了如何继承BaseORMModel、初始化CushyOrmCache,以及进行基本的增删改查操作。通过传入User对象或表名(如"User")进行数据查询,实现复杂条件查询和批量返回。
本文总结了ORM框架的概念和构建方法,以cushy-storage为依托,构建了一个实用的股票博客源码ORM框架。该框架支持复杂条件查询、批量数据返回等功能,简化了对象级数据的操作。
python微服务框架排行榜
1、Django
Django是一个开放源代码的Web应用框架,由Python写成。采用了MTV的框架模式,即模型M,模板T和视图V。它最初是被开发来用于管理劳伦斯出版集团旗下的一些以新闻内容为主的网站的,即是CMS(内容管理系统)软件。
Django与其他框架比较,它有个比较独特的特性,支持orm,将数据库的操作封装成为python,对于需要适用多种数据库的应用来说是个比较好的特性。不过这种特性,已经有其他库完成了,sqlalchemy.
2 、Flask
Flask是一个使用 Python 编写的轻量级 Web 应用框架。其 WSGI 工具箱采用 Werkzeug ,模板引擎则使用 Jinja2 。Flask使用 BSD 授权。
Flask也被称为 “microframework” ,因为它使用简单的核心,用 extension 增加其他功能。Flask没有默认使用的数据库、窗体验证工具。
Flask 很轻,花很少的成本就能够开发一个简单的网站。非常适合初学者学习。Flask 框架学会以后,可以考虑学习插件的使用。例如使用 WTForm + Flask-WTForm 来验证表单数据,用 SQLAlchemy + Flask-SQLAlchemy 来对你的数据库进行控制。
3 、Tornado
Tornado是一种 Web 服务器软件的开源版本。Tornado 和现在的主流 Web 服务器框架(包括大多数 Python 的框架)有着明显的区别:它是非阻塞式服务器,而且速度相当快。
得利于其 非阻塞的方式和对epoll的运用,Tornado 每秒可以处理数以千计的连接,因此 Tornado 是实时 Web 服务的一个 理想框架。不过现在与众多的框架比较,Tornado已经被抛在了后面,Django已经超过了它,更不说其他框架了,只能说Tornado使用纯python开发的性能还是不能与其他框架借助于cython开发的性能相比。
Python - 一文入门Flask(Blueprint、SQLAlchemy部分)
本文将简要介绍如何入门Flask,包括安装准备、路由实现、Blueprint和SQLAlchemy的实践。首先,从安装Flask和pipenv开始,然后逐步构建项目结构,实现Web路由功能和数据库操作。
在PyCharm的环境配置部分,这里主要关注代码实现,而不是环境设置。在项目实践中,Flask的核心是通过App初始化时绑定Blueprint实现路由。首先,创建一个入口文件,负责实例化App并初始化配置、控制器和数据库。
启动文件中,需要进行判断逻辑的引入,这是为了优化程序运行。Flask路由功能是通过蓝图实现的,需要在入口文件中注册蓝图。每个路由器可以使用装载器优化,如在api文件中的示例所示。
完成路由后,我们转向数据库操作,Flask推荐使用SQLAlchemy处理。安装Flask-SQLAlchemy和PyMySQL,便于与MySQL数据库的交互。定义数据库操作的基类和公共方法,减少代码重复。
在入口文件中,通过SQLALCHEMY_DATABASE_URI配置数据库连接,使用with关键字确保资源的正确管理和释放。在model模块中,定义模型、常量和数据库操作方法,这些在路由中会被使用。
关于SQLAlchemy的Mysql编码和列类型,可能需要进行一些优化,包括默认值、索引设置和兼容不同列类型。Python源码提供了详细的设置指导,例如TinyINT类型和VARCHAR的使用。
最后,自定义数据库名和字符集编码时,可以使用__tablename__和字符集设置。编程中,阅读源码注释和示例可以帮助更好地理解和学习。
使用PostgreSQL在Python中构建数据仓库
随着数据量的急剧增长,有效地管理和利用数据变得愈发重要。数据仓库作为一种高效的存储和分析工具,提供了强大的数据管理和操作能力,使数据利用更加高效。然而,构建数据仓库并非易事,需要考虑多个关键要素,如服务器、索引和仪表板。
在构建数据仓库时,首先需要选择一个强大的分布式数据库系统,以确保数据存储的稳定性和弹性。PostgreSQL,因其广泛的功能和用户友好性,成为众多开发者的首选。它不仅支持结构化数据,还能处理非结构化数据,如数组和二进制对象。PostgreSQL还拥有丰富的图形用户界面,便于动态管理和数据操作。
在我们的数据仓库实现中,使用本地PostgreSQL服务器作为数据存储中心。安装过程涉及配置用户名、密码和本地TCP端口。推荐使用pgAdmin 4进行服务器登录,它允许在浏览器中直观地管理数据库。
为了在Python中与PostgreSQL建立连接并操作数据库,需要安装SQLAlchemy包。该包提供了一种高效且灵活的方式来连接、查询和管理数据库。安装后,使用Python脚本创建连接,并设计表结构来存储记录和数组。表名需遵循PostgreSQL的命名规则,并通过主键字段确保数据的唯一性和检索效率。
为了实现数据仓库的完整功能,还应设计相应的接口,包括写入、更新、读取和列出数据的函数。在编写SQL查询时,应避免SQL注入,确保安全性。Streamlit是一个强大的Python库,用于构建交互式应用程序,适用于数据仓库的可视化和管理。利用Streamlit,可以创建一个直观的仪表板,允许用户标记、写入、读取、更新数据,并以图表形式可视化数据集。
通过整合PostgreSQL和Streamlit,可以构建一个功能完备的数据仓库,支持数据的全生命周期管理。这个数据仓库不仅支持单一数据结构的扩展,还提供实时数据可视化功能,方便用户理解数据模式和趋势。GitHub链接提供了详细的实现步骤和源代码示例,帮助开发者快速上手并部署数据仓库解决方案。
FastAPI工具集-SQLAlchemy会话
源码:fastapi_utils.sessions
SQLAlchemy在FastAPI中作为数据库的ORM框架,其使用方法随着社区活跃见解及FastAPI新特性而变化。
fastapi_utils.session模块提供了FastAPI中SQLAlchemy会话管理的合适工具。
FastAPISessionMaker类封装了FastAPI中会话创建功能,用于实例化时读取环境变量中的数据库设置。若环境变量未设置DATABASE_URI,则引发ValidationError。可将database_uri拆分为scheme、username、password、host和db单独字段,通过一个名为database_uri的@property属性构建uri。get_db函数使用上下文管理器依赖项,确保仅在使用会话的端点中创建和关闭会话,避免了基于中间件方法中每个请求处理导致的会话创建和关闭开销。注意get_db依赖项不会在将响应返回给用户之前终结掉ORM会话,可能会导致轻微响应延迟或数据库写入未提交引发错误。在预期数据库写入可能失败的请求中,需手动执行提交并处理错误。基于中间件方法虽然能自动确保数据库错误对用户可见,但可能导致通用的内部服务器错误,需适当地在get_db函数中使用try-except语句块记录清理过程中引发的数据库错误。在FastAPISessionMaker上使用@lru_cache确保相同的FastAPISessionMaker实例在请求中复用,减少开销同时确保实例惰性创建,适用于测试框架以编程方式覆盖环境变量,尤其是测试期间。