皮皮网
皮皮网

【android源码jar封包】【c 代码生成器 源码】【建站工作室网站源码】hbase启动源码_hbase的启动

来源:新余源码建站 发表时间:2024-12-27 19:35:02

1.mimikatz源码分析-lsadump模块(注册表)
2.hbase特性有哪些
3.LevelDB 源码剖析1 -- 原理
4.大数据笔试真题集锦---第五章:Hive面试题
5.TiKV 源码解析系列文章(十四)Coprocessor 概览

hbase启动源码_hbase的动源的启动启动

mimikatz源码分析-lsadump模块(注册表)

       mimikatz是一款内网渗透中的强大工具,本文将深入分析其lsadump模块中的动源的启动sam部分,探索如何从注册表获取用户哈希。动源的启动

       首先,动源的启动简要了解一下Windows注册表hive文件的动源的启动结构。hive文件结构类似于PE文件,动源的启动android源码jar封包包括文件头和多个节区,动源的启动每个节区又有节区头和巢室。动源的启动其中,动源的启动巢箱由HBASE_BLOCK表示,动源的启动巢室由BIN和CELL表示,动源的启动整体结构被称为“储巢”。动源的启动通过分析hive文件的动源的启动结构图,可以更直观地理解其内部组织。动源的启动

       在解析过程中,动源的启动需要关注的关键部分包括块的签名(regf)和节区的签名(hbin)。这些签名对于定位和解析注册表中的数据至关重要。

       接下来,深入解析mimikatz的解析流程。在具备sam文件和system文件的情况下,主要分为以下步骤:获取注册表system的句柄、读取计算机名和解密密钥、获取注册表sam的句柄以及读取用户名和用户哈希。若无sam文件和system文件,mimikatz将直接通过官方API读取本地机器的注册表。

       在mimikatz中,会定义几个关键结构体,包括用于标识操作的注册表对象和内容的结构体(PKULL_M_REGISTRY_HANDLE)以及注册表文件句柄结构体(HKULL_M_REGISTRY_HANDLE)。这些结构体包含了文件映射句柄、映射到调用进程地址空间的位置、巢箱的起始位置以及用于查找子键和子键值的键巢室。

       在获取注册表“句柄”后,接下来的c 代码生成器 源码任务是获取计算机名和解密密钥。密钥位于HKLM\SYSTEM\ControlSet\Current\Control\LSA,通过查找键值,将其转换为四个字节的密钥数据。利用这个密钥数据,mimikatz能够解析出最终的密钥。

       对于sam文件和system文件的操作,主要涉及文件映射到内存的过程,通过Windows API(CreateFileMapping和MapViewOfFile)实现。这些API使得mimikatz能够在不占用大量系统资源的情况下,方便地处理大文件。

       在获取了注册表系统和sam的句柄后,mimikatz会进一步解析注册表以获取计算机名和密钥。对于密钥的获取,mimikatz通过遍历注册表项,定位到特定的键值,并通过转换宽字符为字节序列,最终组装出密钥数据。

       接着,解析过程继续进行,获取用户名和用户哈希。在解析sam键时,mimikatz首先会获取SID,然后遍历HKLM\SAM\Domains\Account\Users,解析获取用户名及其对应的哈希。解析流程涉及多个步骤,包括定位samKey、获取用户名和用户哈希,以及使用samKey解密哈希数据。

       对于samKey的获取,mimikatz需要解密加密的数据,使用syskey作为解密密钥。解密过程根据加密算法(rc4或aes)有所不同,建站工作室网站源码但在最终阶段,mimikatz会调用系统函数对数据进行解密,从而获取用户哈希。

       在完成用户哈希的解析后,mimikatz还提供了一个额外的功能:获取SupplementalCreds。这个功能可以解析并解密获取对应用户的SupplementalCredentials属性,包括明文密码及哈希值,为用户提供更全面的哈希信息。

       综上所述,mimikatz通过解析注册表,实现了从系统中获取用户哈希的高效功能,为内网渗透提供了强大的工具支持。通过深入理解其解析流程和关键结构体的定义,可以更好地掌握如何利用mimikatz进行深入的安全分析和取证工作。

hbase特性有哪些

       HBase的特性包括以下几个方面:

高性能的数据写入

       HBase具有非常强的数据写入性能。其基于LSM树结构,数据被随机地分布在整个集群的多个节点上,这使得数据写入时能够并行处理,大大提高了写入性能。同时,HBase支持大量的并发写入操作,使得它在大数据环境下表现优异。

灵活的表结构设计

       HBase是一个非关系型的数据库,它的表结构非常灵活。每个表可以拥有多个列族,每个列族下的数据可以有不同的存储特性。这种灵活性使得HBase能够适应各种类型的数据存储需求,同时也方便了对数据的扩展和管理。

强大的可扩展性

       HBase是基于Hadoop的分布式文件系统HDFS构建的,具有天然的分布式特性。通过增加节点的方式,HBase可以很容易地扩展其存储能力和处理能力。网盘中转站源码这使得HBase能够在处理海量数据的同时保持高性能。

快速的数据检索

       虽然HBase是一个面向列的数据库,但它的查询性能同样出色。HBase支持高效的范围查询和基于列属性的查询,可以快速定位到特定的数据行。同时,由于数据的分布式存储和处理,即使在大量数据中查询,也能保持较高的效率。

高可用性

       HBase支持集群部署,数据可以在多个节点上进行备份和复制。即使部分节点出现故障,也能保证数据的可用性和系统的稳定运行。这种高可用性使得HBase在大数据处理中非常可靠。而且由于其开放源代码的特性,任何开发者都可以对HBase进行开发和优化,使其更加适应各种应用场景的需求。

LevelDB 源码剖析1 -- 原理

       LSM-Tree,全称Log-Structured Merge Tree,被广泛应用于数据库系统中,如HBase、Cassandra、LevelDB和SQLite,甚至MongoDB 3.0也引入了可选的LSM-Tree引擎。这种数据结构旨在提供优于传统B+树或ISAM(Indexed Sequential Access Method)方法的写入吞吐量,通过避免随机的本地更新操作实现。

       LSM-Tree的核心思想基于磁盘性能的特性:随机访问速度远低于顺序访问,三个数量级的差距。因此,简单地将数据附加至文件尾部(日志或堆文件策略)可以提供接近理论极限的写入吞吐量。尽管这种方法足够简单且性能良好,但它有一个明显的php手机验证码源码缺点:从日志中随机读取数据需要花费更多时间,因为需要按时间顺序从近及远扫描日志直至找到所需键。因此,日志策略仅适用于简单的数据访问场景。

       为了应对更复杂的读取需求,如基于键的搜索、范围搜索等,LSM-Tree引入了一种改进策略,通过创建一系列排序文件来存储数据,每次写入都会生成一个新的文件,同时保留了日志系统优秀的写性能。在读取数据时,系统会检查所有文件,并定期合并文件以减少文件数量,从而提高读取性能。

       在LSM-Tree的基本算法中,写入数据按照顺序保存到一组较小的排序文件中。每个文件代表了一段时间内的数据变更,且在写入前进行排序。内存表作为写入数据的缓冲区,用于保持键值的顺序。当内存表填满后,已排序的数据刷新到磁盘上的新文件。系统会周期性地执行合并操作,选择一些文件进行合并,以减少文件数量和删除冗余数据,同时维持读取性能。

       读取数据时,系统首先检查内存缓冲区,若未找到目标键,则以反向时间顺序检查各个文件,直到找到目标键。合并操作通过定期将文件合并在一起,控制文件数量和读取性能,即使文件数量增加,读取性能仍可保持在可接受范围内。通过使用内存中保存的页索引,可以优化读取操作,尤其是在文件末尾保留索引块,这通常比直接二进制搜索更高效。

       为了减少读取操作时访问的文件数量,新实现采用了分级合并(Leveled Compaction),即基于级别的文件合并策略。这不仅减少了最坏情况下需要访问的文件数量,还减少了单次压缩的副作用,同时提供更好的读取性能。分级合并与基本合并的主要区别在于文件合并的策略,这使得工作负载扩展合并的影响更高效,同时减少总空间需求。

大数据笔试真题集锦---第五章:Hive面试题

       我会不间断地更新维护,希望对正在寻找大数据工作的朋友们有所帮助。

       第五章目录

       第五章 Hive

       5.1 Hive 运行原理(源码级)

       1.1 reduce端join

       在reduce端,对两个表的数据分别标记tag,发送数据。根据分区分组规则获取相同key的数据,再根据tag进行join操作,完成实际连接。

       1.2 map端join

       将小表复制到每个map task的内存中,仅扫描大表,对大表中key在小表中存在时进行join操作。使用DistributedCache.addCacheFile设置小表,通过标准IO获取数据。

       1.3 semi join

       先将参与join的表1的key复制到表3中,复制多份到各map task,过滤不在新表3的表2数据,最后进行reduce。

       5.2 Hive 建表

5.3.1 传统方式建表

       定义数据类型,如:TINYINT, STRING, TIMESTAMP, DECIMAL。

       使用ARRAY, MAP, STRUCT结构。

5.3.2 CTAS查询建表

       创建表时指定表名、存储格式、数据来源查询语句。

       缺点:默认数据类型范围限制。

5.3.3 Like建表

       通过复制已有表的结构来创建新表。

5.4 存储格式和压缩格式

       选择ORC+bzip/gzip作为源存储,ORC+Snappy作为中间存储。

       分区表单文件不大采用gzip压缩,桶表使用bzip或lzo支持分片压缩。

       设置压缩参数,如"orc.compress"="gzip"。

5.5 内部表和外部表

       外部表使用external关键字和指定HDFS目录创建。

       内部表在创建时生成对应目录的文件夹,外部表以指定文件夹为数据源。

       内部表删除时删除整个文件夹,外部表仅删除元数据。

5.6 分区表和分桶表

       分区表按分区字段拆分存储,避免全表查询,提高效率。

       动态分区通过设置参数开启,根据字段值决定分区。

       分桶表依据分桶字段hash值分组拆分数据。

5.7 行转列和列转行

       行转列使用split、explode、laterview,列转行使用concat_ws、collect_list/set。

5.8 Hive时间函数

       from_unixtime、unix_timestamp、to_date、month、weekofyear、quarter、trunc、current_date、date_add、date_sub、datediff。

       时间戳支持转换和截断,标准格式为'yyyy-MM-dd HH:mm:ss'。

       month函数基于标准格式截断,识别时截取前7位。

5.9 Hive 排名函数

       row_number、dense_rank、rank。

5. Hive 分析函数:Ntile

       效果:排序并分桶。

       ntile(3) over(partition by A order by B)效果,可用于取前%数据统计。

5. Hive 拉链表更新

       实现方式和优化策略。

5. Hive 排序

       order by、order by limit、sort by、sort by limit的原理和应用场景。

5. Hive 调优

       减少distinct、优化map任务数量、并行度优化、小文件问题解决、存储格式和压缩格式设置。

5. Hive和Hbase区别

       Hive和Hbase的区别,Hive面向分析、高延迟、结构化,Hbase面向编程、低延迟、非结构化。

5. 其他

       用过的开窗函数、表join转换原理、sort by和order by的区别、交易表查询示例、登录用户数量查询、动态分区与静态分区的区别。

TiKV 源码解析系列文章(十四)Coprocessor 概览

       本文将简要介绍 TiKV Coprocessor 的基本原理。TiKV Coprocessor 是 TiDB 的一部分,用于在 TiKV 层处理读请求。通过引入 Coprocessor,TiKV 可以在获取数据后进行计算,从而提高性能。

       传统处理方式中,TiDB 向 TiKV 获取数据,然后在 TiDB 内部进行计算。而 Coprocessor 则允许 TiKV 进行计算,将计算结果直接返回给 TiDB,减少数据在系统内部的传输。

       Coprocessor 的概念借鉴自 HBase,其主要功能是对读请求进行分类,处理包括 TableScan、IndexScan、Selection、Limit、TopN、Aggregation 等不同类型请求。其中,DAG 类请求是最复杂且常用的类型,本文将重点介绍。

       DAG 请求是由一系列算子组成的有向无环图,这些算子在代码中称为 Executors。DAG 请求目前支持两种计算模型:火山模型和向量化模型。在当前的 TiKV master 上,这两种模型并存,但火山模型已被弃用,因此本文将重点介绍向量化计算模型。

       向量化计算模型中,所有算子实现了 BatchExecutor 接口,其核心功能是 get_batch。算子类型包括 TableScan、IndexScan、Selection、Limit、TopN 和 Aggregation 等,它们之间可以任意组合。

       以查询语句“select count(1) from t where age>”为例,展示了如何使用不同算子进行处理。本文仅提供 Coprocessor 的概要介绍,后续将深入分析该模块的源码细节,并欢迎读者提出改进意见。

相关栏目:热点