皮皮网

【短线kdj源码】【牛牛app平台源码】【资金进场公式源码】读完redis源码 什么水平_redis源码解读

来源:电脑商城网站源码 时间:2025-01-18 17:04:30

1.Redis 读完读实现分布式锁 +Redisson 源码解析
2.Redis源码从哪里读起?
3.Redisson可重入锁加锁源码分析
4.分析SpringBoot 的Redis源码
5.Redis 主从复制 - 源码梳理
6.读懂Redis:从源码分析其跳表实现

读完redis源码 什么水平_redis源码解读

Redis 实现分布式锁 +Redisson 源码解析

       在一些场景中,多个进程需要以互斥的源s源方式独占共享资源,这时分布式锁成为了一个非常有用的码什码解工具。

       随着互联网技术的水平快速发展,数据规模在不断扩大,读完读分布式系统变得越来越普遍。源s源短线kdj源码一个应用往往会部署在多台机器上(多节点),码什码解在某些情况下,水平为了保证数据不重复,读完读同一任务在同一时刻只能在一个节点上运行,源s源即确保某一方法在同一时刻只能被一个线程执行。码什码解在单机环境中,水平应用是读完读在同一进程下的,仅需通过Java提供的源s源 volatile、ReentrantLock、码什码解synchronized 及 concurrent 并发包下的线程安全类等来保证线程安全性。而在多机部署环境中,不同机器不同进程,需要在多进程下保证线程的安全性,因此分布式锁应运而生。

       实现分布式锁的三种主要方式包括:zookeeper、Redis和Redisson。这三种方式都可以实现分布式锁,但基于Redis实现的性能通常会更好,具体选择取决于业务需求。

       本文主要探讨基于Redis实现分布式锁的方案,以及分析对比Redisson的RedissonLock、RedissonRedLock源码。

       为了确保分布式锁的可用性,实现至少需要满足以下四个条件:互斥性、过期自动解锁、请求标识和正确解锁。实现方式通过Redis的set命令加上nx、px参数实现加锁,以及使用Lua脚本进行解锁。实现代码包括加锁和解锁流程,核心实现命令和Lua脚本。这种实现方式的主要优点是能够确保互斥性和自动解锁,但存在单点风险,即如果Redis存储锁对应key的节点挂掉,可能会导致锁丢失,导致多个客户端持有锁的情况。

       Redisson提供了一种更高级的实现方式,实现了分布式可重入锁,包括RedLock算法。Redisson不仅支持单点模式、主从模式、哨兵模式和集群模式,还提供了一系列分布式的Java常用对象和锁实现,如可重入锁、公平锁、联锁、牛牛app平台源码读写锁等。Redisson的使用方法简单,旨在分离对Redis的关注,让开发者更专注于业务逻辑。

       通过Redisson实现分布式锁,相比于纯Redis实现,有更完善的特性,如可重入锁、失败重试、最大等待时间设置等。同时,RedissonLock同样面临节点挂掉时可能丢失锁的风险。为了解决这个问题,Redisson提供了实现了RedLock算法的RedissonRedLock,能够真正解决单点故障的问题,但需要额外为RedissonRedLock搭建Redis环境。

       如果业务场景可以容忍这种小概率的错误,推荐使用RedissonLock。如果无法容忍,推荐使用RedissonRedLock。此外,RedLock算法假设存在N个独立的Redis master节点,并确保在N个实例上获取和释放锁,以提高分布式系统中的可靠性。

       在实现分布式锁时,还需要注意到实现RedLock算法所需的Redission节点的搭建,这些节点既可以是单机模式、主从模式、哨兵模式或集群模式,以确保在任一节点挂掉时仍能保持分布式锁的可用性。

       在使用Redisson实现分布式锁时,通过RedissonMultiLock尝试获取和释放锁的核心代码,为实现RedLock算法提供了支持。

Redis源码从哪里读起?

       如果你正寻求理解Redis源码的路径,本文为你提供了一个全面的指南。Redis 是使用 C 语言构建的,因此,我们从 main 函数开始,深入探索其核心逻辑。在阅读过程中,我们应聚焦于从外部命令输入到内部执行流程的路径,逐步理解 Redis 的工作原理。

       理解事件机制对于深入 Redis 的核心至关重要。通过 Redis 的事件循环,我们可以实现单线程环境下的高效处理多任务的能力。这一机制允许 Redis 以线程安全的方式处理大量请求,同时在执行后台任务时保持响应速度。事件循环与系统提供的异步 I/O 多路复用机制相结合,确保了 CPU 资源的高效利用,避免了并发执行的复杂性。

       在讨论事件循环时,资金进场公式源码我们重点关注了两个阶段:初始化和事件处理。初始化阶段涉及配置和数据加载,而事件处理阶段则负责响应客户端请求、执行命令以及周期性任务的调度。通过事件循环,Redis 实现了在单一线程下处理多个请求的高效运行模式。

       理解 Redis 命令请求的处理流程是整个指南的关键部分。当客户端向 Redis 发送命令时,流程分为两个阶段:连接建立和命令执行与响应。连接建立阶段由事件循环触发,而命令执行与响应阶段则涉及读取客户端发送的数据,执行命令并返回结果。这一过程通过特定的回调函数实现,确保了命令处理的高效和线程安全。

       此外,我们还讨论了 Redis 的事件机制,即事件驱动程序库 ae.c,它在不同操作系统上支持多种 I/O 多路复用机制。在选择底层机制时,Redis 优先考虑后三种更现代、高效的方案,例如 macOS 上的 kqueue 和 Linux 上的 epoll。理解这些机制对于实现高性能网络服务至关重要。

       为了帮助读者在阅读 Redis 源码时构建清晰的思维路径,我们提供了一个树型图展示关键函数之间的调用关系。这张图基于 Redis 源码的 5.0 分支,详细地展示了初始化、事件处理、命令请求处理等关键流程的调用顺序。

       最后,本文提供的参考文献旨在为读者提供进一步学习的资源。对于希望深入理解 Redis 源码并学习 C 语言编程经验的读者,这些资源将起到重要作用。总的来说,本文旨在为那些希望从源头上理解 Redis 工作机制的技术爱好者提供一个全面、系统化的指南。

Redisson可重入锁加锁源码分析

       在分布式环境中,控制并发的关键往往需要分布式锁。Redisson,作为Redis的高效客户端,其源码清晰易懂,这里主要探讨Redisson可重入锁的加锁原理,以版本3..5为例,但重点是理解其核心逻辑,而非特定版本。

       加锁始于用户通过`redissonClient`获取RLock实例,并通过`lock`方法调用。这个过程最后会进入`RLock`类的`lock`方法,核心步骤是`tryAcquire`方法。

       `tryAcquire`方法中,首先获取线程ID,gmm模型源码 matlab用于标识是哪个线程在请求锁。接着,尝试加锁的真正核心在`tryAcquireAsync`,它嵌套了`get`方法,这个get方法会阻塞等待异步获取锁的结果。

       在`tryAcquireAsync`中,如果锁的租期未设置,会使用默认的秒。脚本执行是加锁的核心,一个lua脚本负责保证命令的原子性。脚本中,`keys`和`argv`参数处理至关重要,尤其是判断哈希结构`_come`的键值对状态。

       脚本逻辑分为三个条件:如果锁不存在,会设置并设置过期时间;如果当前线程已持有锁,会增加重入次数并更新过期时间;若其他线程持有,加锁失败并返回剩余存活时间。加锁失败时,系统会查询锁的剩余时间,用于后续的重试策略。

       加锁成功后,会进行自动续期,通过`Future`监听异步操作结果。如果锁已成功获取且未设置过期时间,会定时执行`scheduleExpirationRenewal`,每秒检查锁状态,延长锁的存活时间。

       整个流程总结如下:首先通过lua脚本在Redis中创建和更新锁的哈希结构,对线程进行标识。若无过期时间,定时任务会确保锁的持续有效。重入锁通过`hincrby`增加键值对实现。加锁失败后,客户端会等待锁的剩余存活时间,再进行重试。

       至于加锁失败的处理,客户端会根据剩余存活时间进行阻塞,等待后尝试再次获取锁。这整个流程展现了Redisson可重入锁的简洁设计,主要涉及线程标识、原子操作和定时续期等关键点。

分析SpringBoot 的Redis源码

       在Spring Boot 2.X版本中,官方简化了项目配置,如无需编写繁琐的web.xml和相关XML文件,只需在pom.xml中引入如spring-boot-starter-data-redis的starter包即可完成大部分工作,这极大地提高了开发效率。

       深入理解其原理,我们研究了spring-boot-autoconfigure和spring-boot-starter-data-redis的源码。首先,配置项在application.properties中的设置会被自动映射到名为RedisProperties的类中,此类由RedisAutoConfiguration类负责扫描和配置。仿小红书源码该类会检测是否存在RedisOperations接口的实现,例如官方支持的Jedis或Lettuce,以此来决定使用哪个客户端。

       在RedisAutoConfiguration中,通过@Bean注解,它引入了LettuceConnectionConfiguration和JedisConnectionConfiguration,这两个配置类会创建RedisConnectionFactory实例。在注入RedisTemplate时,实际使用的会是第一个被扫描到的RedisConnectionFactory,这里通常是LettuceConnectionFactory,因为它们在@Import注解的导入顺序中位于前面。

       自定义starter时,可以模仿官方starter的结构,首先引入spring-boot-autoconfigure,然后创建自己的配置类(如MyRedisProperties)和操作模板类(如JedisTemplete)。在MyRedisAutoConfiguration中,你需要编写相关配置并确保在spring.factories文件中注册,以便Spring Boot在启动时扫描到你的自定义配置。

       以自定义my-redis-starter为例,项目结构包括引入的依赖,配置类的属性绑定,以及创建连接池和操作方法的实现。测试时,只需在Spring Boot项目中引入自定义starter,配置好相关参数,即可验证自定义starter的正确工作。

Redis 主从复制 - 源码梳理

       本文主要剖析Redis主从复制机制中的核心组件之一——复制积压缓冲区(Replication Buffer),旨在为读者提供一个对Redis复制流程和缓冲区机制深入理解的平台,以下内容仅基于Redis版本7.0.,若读者在使用过程中发现偏差,欢迎指正。

       复制积压缓冲区在逻辑上可理解为一个容量最大的位整数,其初始值为1,由offset、master_repl_offset和repl_backlog-histlen三个变量共同决定缓冲区的有效范围。offset表示缓冲区内命令起始位置,master_repl_offset代表结束位置,二者之间的长度由repl_backlog-histlen表示。

       每当主节点执行写命令,新生成的积压缓冲区大小增加,同时增加master_repl_offset和repl_backlog-histlen的值,直至达到预设的最大容量(默认为1MB)。一旦所有从节点接收到命令并确认同步无误,缓冲区内过期的命令将被移除,并调整offset和histlen以维持积压区容量的稳定性。

       为实现动态分配,复制积压缓冲区被分解成多个block,以链表形式组织。每个block采用引用计数管理策略,初始值为0,每当增加或删除从节点对block的引用时,计数值相应增减。新生成block时,将master_repl_offset+1设置为block的repl_offset值,并将写入命令拷贝至缓冲区内,与此同时,master_repl_offset和repl_backlog-histlen增加。

       通过循环遍历所有从节点,为每个从节点设置ref_repl_buf_node指向当前block或最后一个block,确保主从复制能够准确传递命令。当主节点接收到从节点的连接请求时,将开始填充积压缓冲区。在全量复制阶段,从slave-replstate为WAIT_BGSAVE_START至ONLINE,表示redis从后台进程开始执行到完成RDB文件传输和加载,命令传播至此阶段正式开始。

       针对每个从节点,主节点从slave-ref_block_pos开始发送积压缓冲区内的命令,每发送成功,slave-ref_block_pos相应更新。当积压缓冲区超过预设阈值,即复制积压缓冲区中的有效长度超过repl-backlog-size(默认1MB)时,主节点将清除已发送的缓冲区,释放内存。如果主节点写入命令频繁或从节点断线重连时间长,则需合理调整缓冲区大小(推荐值为2 * second * write_size_per_second)以保持增量复制的稳定运行。

       当最后一个从节点与主节点的连接断开超过repl-backlog-ttl(默认为秒)时,主节点将释放repl_backlog和复制积压缓冲区以确保资源的有效使用。不过需要注意的是,从节点的释放操作依赖于节点是否可能成为新的主节点,因此在最后处理逻辑上需保持谨慎。

读懂Redis:从源码分析其跳表实现

       要深入理解Redis中跳表的奥秘,首先,我们从理想化的跳表概念开始。跳表作为一种多层级有序链表,旨在提供高效的有序集合操作,如zrange和zrevrange。它的设计旨在通过空间换时间,以O(log_2 n)的时间复杂度进行查找,但删除和增加操作可能导致结构变动,这在理想情况下需要复杂的重构。

       Redis在实践中对跳表进行了优化,以牺牲一定程度的复杂性来节省内存。它限制了跳表的最高层级为,并根据节点数量和字符串长度选择是否使用跳表。Redis的跳表设计重点在于第一个层级的元素,这使得范围查询极其高效,而这是其他数据结构难以比拟的特性。

       当添加新元素到zset对象时,会根据特定条件(zset_max_ziplist_entries和zset_max_ziplist_value)决定是否转换为跳表。通过配置Redis的配置文件,用户可以调整这些参数以适应不同的需求。

       总的来说,Redis的跳表实现是内存与性能之间的一种平衡,它在有序集合操作中发挥着关键作用,同时为高效查询提供了基础。对于希望系统学习C/C++、Linux系统和深入理解高性能存储的读者,可以关注我们的公众号《Lion 莱恩呀》获取更多技术内容,包括白金学习卡,覆盖基础架构、golang云原生等领域。

Redis 源码分析字典(dict)

       Redis 的内部字典世界:从哈希表到高效管理的深度解析

       Redis,作为开源的高性能键值存储系统,其内部实现的字典数据结构是其核心组件之一。这个数据结构采用自定义的哈希表——dictEntry,巧妙地存储和管理着键值对。让我们一起深入理解这一强大工具的运作机制。

       首先,Redis的字典是基于哈希表的,通过哈希函数将键转换为数组索引,实现高效查找。dictEntry结构巧妙地封装了键(key)、值(value)以及指向下一个节点的指针,构成了数据存储的基本单元。同时,dict包含一系列操作函数,包括哈希计算、键值复制、比较以及销毁操作,这些函数的指针类型(dictType)和实际数据结构共同构建了其高效性能。

       在字典的管理中,rehash是一个关键概念,它标志着哈希表的重新分布过程。rehash标志是一个计数器,用于跟踪当前哈希表实例的状态,确保在负载过高时进行扩容。当ht_used[0]非零,且满足特定条件(如元素数量超过初始桶数),服务器会触发resize操作,这通常在serverCron定时任务中进行,以避免磁盘I/O竞争。

       rehash过程中,Redis采取渐进式策略,通过dictRehash函数,逐个移动键值对到新哈希表,确保操作的线程安全。为了避免长时间阻塞,这个过程被分散到函数中,并通过serverCron定时任务,以毫秒级的步长进行,确保在无磁盘写操作时进行。

       在处理过期键时,dictRehashMilliseconds()函数扮演重要角色,它在rehash时监控时间消耗,确保性能。rehash过程中,dictAdd负责插入新哈希表,而dictFind和dictDelete则需处理ht_table[0]和ht_table[1]的键值对。

       Redis的默认哈希算法采用SipHash,保证了数据的分布均匀性。在持久化时,负载因子默认设置为5,而rehash后,数据结构会采用迭代器的形式,分为安全和非安全两种,以满足不同场景的需求。

       在实际操作中,如keysCommand,会选择安全模式以避免重复遍历,而在处理大规模数据时,如scan命令,可能需要使用非安全模式,但需注意可能带来的问题。

       总的来说,Redis的字典数据结构是其高效性能的基石,通过精细的哈希管理、rehash策略以及迭代器设计,确保了在高并发和频繁操作下的稳定性和性能。深入理解这些内部细节,对于优化Redis性能和应对复杂应用场景至关重要。

Redis7.0源码阅读:哈希表扩容、缩容以及rehash

       当哈希值相同发生冲突时,Redis 使用链表法解决,将冲突的键值对通过链表连接,但随着数据量增加,冲突加剧,查找效率降低。负载因子衡量冲突程度,负载因子越大,冲突越严重。为优化性能,Redis 需适时扩容,将新增键值对放入新哈希桶,减少冲突。

       扩容发生在 setCommand 部分,其中 dictKeyIndex 获取键值对索引,判断是否需要扩容。_dictExpandIfNeeded 函数执行扩容逻辑,条件包括:不在 rehash 过程中,哈希表初始大小为0时需扩容,或负载因子大于1且允许扩容或负载因子超过阈值。

       扩容大小依据当前键值对数量计算,如哈希表长度为4,实际有9个键值对,扩容至(最小的2的n次幂大于9)。子进程存在时,dict_can_resize 为0,反之为1。fork 子进程用于写时复制,确保持久化操作的稳定性。

       哈希表缩容由 tryResizeHashTables 判断负载因子是否小于0.1,条件满足则重新调整大小。此操作在数据库定时检查,且无子进程时执行。

       rehash 是为解决链式哈希效率问题,通过增加哈希桶数量分散存储,减少冲突。dictRehash 函数完成这一任务,移动键值对至新哈希表,使用位运算优化哈希计算。渐进式 rehash 通过分步操作,减少响应时间,适应不同负载情况。定时任务检测服务器空闲时,进行大步挪动哈希桶。

       在 rehash 过程中,数据查询首先在原始哈希表进行,若未找到,则在新哈希表中查找。rehash 完成后,哈希表结构调整,原始表指向新表,新表内容返回原始表,实现 rehash 结果的整合。

       综上所述,Redis 通过哈希表的扩容、缩容以及 rehash 动态调整哈希桶大小,优化查找效率,确保数据存储与检索的高效性。这不仅提高了 Redis 的性能,也为复杂数据存储与管理提供了有力支持。

Redis源码解析:一条Redis命令是如何执行的?

       作者:robinhzhang

       Redis,一个开源内存数据库,凭借其高效能和广泛应用,如缓存、消息队列和会话存储,本文将带你探索其命令执行的底层流程。本文将以源码解析的形式,逐层深入Redis的核心结构和命令执行过程,旨在帮助开发者理解实现细节,提升编程技术和设计意识。

       源码结构概览

       在学习Redis源代码之前,首先要了解其主要的组成部分:redisServer、redisClient、redisDb、redisObject以及aeEventLoop。这些结构体和事件模型构成了Redis的核心架构。

       redisServer:服务端运行的核心结构,包括监听socket、数据存储的redisDb列表和客户端连接信息。

       redisClient:客户端连接状态的存储,包括命令处理缓冲区、回复数据列表和数据库句柄。

       redisDb:键值对的数据存储,采用两个哈希表实现渐进式rehash。

       redisObject:存储对象的通用表示,包含引用计数和LRU时间,用于内存管理。

       aeEventLoop:事件循环,管理文件和时间事件的处理。

       核心流程详解

       Redis的执行流程从main函数开始,首先初始化配置和服务器组件,进入主循环处理事件。命令执行流程涉及redis启动、客户端连接、接收命令和返回结果四个步骤:

       启动阶段:创建socket服务器,注册可读事件,进入主循环。

       连接阶段:客户端连接后,接收并处理命令,创建客户端实例。

       命令阶段:客户端发送命令,服务端解析并调用对应的命令处理函数。

       结果阶段:处理命令后,根据协议格式构建回复并写回客户端。

       渐进式rehash与内存管理

       Redis的内存管理采用引用计数法,通过对象的refcount字段控制内存分配和释放。rehash操作在Redis 2.x版本引入,通过逐步迁移键值对,降低对单线程性能的影响。当负载达到阈值,会进行扩容,这涉及新表的创建和键值对的迁移。

       总结

       本文通过Redis源码分析,揭示了其命令执行的细节,包括启动流程、客户端连接、命令处理和结果返回,以及内存管理策略。这将有助于开发者深入理解Redis的工作原理,提升编程效率和设计决策能力。