1.FindVariableFeatures
2.PCA9685:I2C转16路PWM,的a代助力你的源码系统
3.2020-07-21
4.FreeBSD下修改安装源的方法
5.综合评价与决策——主成分分析(PCA)法(附Python源码)
6.C#中如何编写PCA算法代码?
FindVariableFeatures
åç»èæç« å±åºä¸éï¼å¨éç°æç« æ°æ®çæ¶ååç°ï¼æçæç« æä¾çæ¯å¤çåçåç»èç©éµï¼èä¸æ¯åå§countsãå ¶ä¸æçæ°æ®çè³æ¯scaled dataï¼è¿æ ·æå°±æçé®ï¼ç´æ¥å©ç¨scaled dataè½å¦è¿è¡åç»èåæã
åç»èæ°æ®è¿è¡åæ主è¦æå 个æ¥éª¤ï¼lognormalizedï¼FindVariableFeaturesï¼scaledataï¼PCAï¼FindClustersãå ¶ä¸ï¼å¯ä»¥ç¥è¿lognormalizedåscaledataæ¥éª¤ï¼ä½æ¯FindVariableFeaturesç¨æ¥åç°é«å¯ååºå ï¼ä¼¼ä¹åªæscaled dataä¸è½è¿è¡é«å¯ååºå çåç°ï¼ä¸è¿ä¸æ¥çé«å¯ååºå ç¨äºåç»PCAåæï¼ä¹ä¸è½çç¥ï¼å æ¤æçäºä¸FindVariableFeaturesçæºç ï¼Seurat V3çæ¬ï¼ï¼
å¯ä»¥çå°ï¼é«å¯ååºå çè·åæ¯å©ç¨åå§countsç©éµæè lognormalized dataçj计ç®çï¼ä¹å°±æ¯è¯´seuratä½è 认为scaled dataæ¥è®¡ç®é«å¯ååºå å¯è½æ¯ä¸åç¡®çï¼å æ¤æç« åªæä¾äºscaled dataæ¯ä¸è½è¿è¡é«å¯ååºå ç计ç®çã
å½ç¶ï¼ä¼æ好(tai)å¥(gang)ç人é®äºï¼æå°±æ¯è¦ç¨scaled dataæ¥è¿è¡FindVariableFeaturesï¼ä¼å¾å°æ¯è¾å¯é çé«å¯ååºå åï¼å æ¤ï¼ææµè¯äºä¸è¿ç¨counts, lognormalized data, scaled dataæ¥è¿è¡é«å¯ååºå è·åï¼
å¯ä»¥çå°ï¼å©ç¨scaled data计ç®åºæ¥çé«å¯ååºå ä¸counts,data计ç®åºæ¥çå·®å«æ¯å¾å¤§çã
é£ä¹æ²¡æé«å¯ååºå æ¯ä¸æ¯å°±ä¸è½è¿è¡PCAçéç»´åæäºå¢ï¼ç论ä¸å½ç¶ä¸æ¯ï¼RunPCAå¯ä»¥èªå·±æå®åºå æ¥è¿è¡ã
PCA:I2C转路PWM,助力你的的a代系统
PCA是一种主要用作I2C转路PWM的集成电路,适用于舵机控制、源码LED颜色控制等。的a代其控制精度在Hz的源码猩球重启源码控制频率下,脉宽为0.5ms~2.5ms,的a代具备位分辨率(级),源码具体精度计算需参考相关资料。的a代
PCA有两种封装形式:TSSOP与HVQFN,源码各有相应的的a代引脚排列。每个引脚的源码功能描述如下图所示。引脚A0-A5共同决定器件地址,的a代由于有6个引脚参与,源码因此可有个不同的的a代器件地址。除了LED All Call address (E0h)和Software Reset address (h)外,实际可用地址为个,理论上,1个I2C接口可控制多达路PWM。golang棋牌源码器件地址的设置示意图如下图所示。默认情况下,若A0-A5全部接地,则器件地址为0x。
默认状态下,上电复位后,寄存器地址默认值为0,具体寄存器地址及其用途见下图。重点关注以下寄存器:模式设置寄存器、PWM通道寄存器与占空比设置、PWM周期(频率)寄存器与周期(频率)设置。
在使用模式设置寄存器时,需注意以下事项:首先介绍MODE1寄存器,其功能如下图所示。在配置模式时,特别关注MODE2寄存器的各位功能,如图所示。
PWM通道寄存器的卡哇伊app源码设置如下图所示,每个通道有4个寄存器,每个寄存器图解如图所示。在设置PWM占空比时,首先配置舵机,例如ON < OFF情况。特殊情况下,PWM周期大于定时器一次计数时,配置ON>OFF情况。
配置PWM频率时,一般采用内置晶振,频率为MHz。通过配置PRE_SCALE寄存器来调整频率,其与PWM频率的关系见下图。若使用内置晶振,取osc_clock=,update_rate=(舵机控制频率Hz)。
推荐硬件设计时,确保OE引脚接低电平以确保IC使能。活动抢源码若连接LED灯,则推荐连接方式如下图所示。
软件设计部分,Micro:bit平台采用TypeScript(JavaScript的超类)进行底层开发,提供基本操作方法及其思路。日后再更新C、C++及其它平台(STM、Linux树莓派、Arduino等)的操作方法。Micro:bit驱动PCA的源代码提供,注意源代码中的时间为us,与教程中的ms不同。
树莓派平台采用Python驱动PCA,首先安装Python和smbus库。Python代码如下所示,保存文件名为pca.py,命令行进入该文件所在的路径,运行该Python脚本。maven源码导读执行命令后,即可控制舵机从0度转到度,再从度转到0度。
--
主æååæï¼PCAï¼æ¯ä¸ç§æ°æ®éç»´åå»é¤ç¸å ³æ§çæ¹æ³ï¼å®éè¿çº¿æ§åæ¢å°åéæå½±å°ä½ç»´ç©ºé´ã对åéè¿è¡æ影就æ¯å¯¹åéå·¦ä¹ä¸ä¸ªç©éµï¼å¾å°ç»æåéï¼å¨è¿éï¼ç»æåéçç»´æ°å°äºåå§åéçç»´æ°ãéç»´è¦ç¡®ä¿çæ¯å¨ä½ç»´ç©ºé´ä¸çæå½±è½å¾å¥½å°è¿ä¼¼è¡¨è¾¾åå§åéï¼å³éæ误差æå°åã
æ ¸å¿çé®é¢çå¦ä½å¾å°æå½±ç©éµï¼åå ¶ä»çæºå¨å¦ä¹ ç®æ³ä¸æ ·ï¼å®éè¿ä¼åç®æ å½æ°å¾å°ãé¦å èèæç®åçæ åµï¼å°åéæå½±å°ä¸ç»´ç©ºé´ï¼ç¶åæ¨å¹¿å°ä¸è¬æ åµã
å设æ n 个 d ç»´åé X i ï¼å¦æè¦ç¨ä¸ä¸ªåé X 0 æ¥è¿ä¼¼ä»£æ¿å®ä»¬ï¼è¿ä¸ªåéåä»ä¹å¼çæ¶åè¿ä¼¼ä»£æ¿ç误差æå°ï¼å¦æç¨åæ¹è¯¯å·®ä½ä¸ºæ åï¼å°±æ¯è¦æå°åå¦ä¸å½æ°ï¼
æ¾ç¶é®é¢çæä¼è§£æ¯è¿äºåéçåå¼ï¼
è¯æå¾ç®åã为äºæ±ä¸é¢è¿ä¸ªç®æ å½æ°çæå°å¼ï¼å¯¹å®çæ±æ¢¯åº¦ï¼æ±å¯¼ï¼å¹¶ä»¤æ¢¯åº¦çäº0ï¼å¯ä»¥å¾å°
解è¿ä¸ªæ¹ç¨å³å¯å¾å°ä¸é¢çç»è®ºãåªç¨åå¼ä»£è¡¨æ´ä¸ªæ ·æ¬éè¿äºç®åï¼è¯¯å·®å¤ªå¤§ãä½ä¸ºæ¹è¿ï¼å¯ä»¥å°æ¯ä¸ªåé表示æåå¼åéåå¦å¤ä¸ä¸ªåéçåï¼
å ¶ä¸ï¼e为åä½åéï¼ai æ¯æ éãä¸é¢è¿ç§è¡¨ç¤ºç¸å½äºæåéæå½±å°ä¸ç»´ç©ºé´ï¼åæ å°±æ¯ai ãå½eåaiåä»ä¹å¼çæ¶åï¼è¿ç§è¿ä¼¼è¡¨è¾¾ç误差æå°ï¼
è¿ç¸å½äºæå°åå¦ä¸è¯¯å·®å½æ°ï¼
å°ä¸é¢æ±å¾çaiå¸¦å ¥ç®æ å½æ°ä¸ï¼å¾å°åªæåéeçå½æ°ï¼
ä¸å¼çååé¨ååeæ å ³ï¼ç±äºeæ¯åä½åéï¼å æ¤æ ||e||=1 ç约æï¼è¿ä¸ªçº¦ææ¡ä»¶å¯ä»¥åæe T e=1ãæ们è¦æ±è§£çæ¯ä¸ä¸ªå¸¦çå¼çº¦æçæå¼é®é¢ï¼å¯ä»¥ä½¿ç¨ææ ¼ææ¥ä¹æ°æ³ãæé ææ ¼ææ¥å½æ°ï¼
å æ¤ï¼è¿ä¸ªç©éµåæ£å®ãè¿ééè¦æ大å e T Se çå¼ï¼ç±äº
å æ¤ï¼ 为æ£åº¦ç©éµæ大çç¹å¾å¼æ¶ï¼ e T Se ææ大å¼ï¼ç®æ å½æ°åå¾æå°å¼ãå°ä¸è¿°ç»è®ºä»ä¸ç»´æ¨å¹¿å° d' ç»´ãæ¯ä¸ªåéå¯ä»¥è¡¨è¾¾æ
å¨è¿é e i æ¯åä½åéã误差å½æ°åæ
å¯ä»¥è¯æï¼ä½¿å¾è¯¥å½æ°åæå°å¼ç e j 为æ£åº¦ç©éµæ大çd'个ç¹å¾å¼å¯¹åºçåä½é¿åº¦ç¹å¾åéï¼å³æ±è§£ä¸é¢çä¼åé®é¢ï¼
å ¶ä¸ï¼ tr 为ç©éµç迹ãç©éµWçå e j æ¯è¦æ±è§£ç迹çåºåéãæ£åº¦ç©éµæ¯å®å¯¹ç§°ç©éµï¼å±äºä¸åç¹å¾å¼çç¹å¾åéç¸äºæ£äº¤ãåé¢å·²ç»è¯æè¿ä¸ªç©éµåæ£å®ï¼ç¹å¾å¼éè´ãè¿äºç¹å¾åéææä¸ç»åºåéï¼å¯ä»¥ç¨å®ä»¬ç线æ§ç»åæ¥è¡¨è¾¾åé x ãä»å¦å¤ä¸ä¸ªè§åº¦æ¥çï¼è¿ç§åæ¢å°åæ¹å·®ç©éµå¯¹è§åï¼ç¸å½äºå»é¤äºååéä¹é´çç¸å ³æ§ã
ä»ä¸é¢çæ¨å¯¼è¿ç¨å¯ä»¥å¾å°è®¡ç®æå½±ç©éµçæµç¨å¦ä¸ï¼
ï¼1ï¼è®¡ç®æ ·æ¬éçåå¼åéï¼å°ææåéåå»åå¼ï¼è¿æ为ç½åï¼
ï¼2ï¼è®¡ç®æ ·æ¬éçåæ¹å·®ç©éµï¼
ï¼3ï¼å¯¹åæ¹å·®ç©éµè¿è¡ç¹å¾å¼å解ï¼å¾å°ææç¹å¾å¼ä¸ç¹å¾åéï¼
ï¼4ï¼å°ç¹å¾å¼ä»å¤§å°å°æåºï¼ä¿çæ大çä¸é¨åç¹å¾å¼å¯¹åºçç¹å¾åéï¼ä»¥å®ä»¬ä¸ºè¡ï¼å½¢ææå½±ç©éµã
å ·ä½ä¿çå¤å°ä¸ªç¹å¾å¼ç±æå½±åçåéç»´æ°å³å®ã使ç¨åæ¹å·®ç©éµå使ç¨æ£åº¦ç©éµæ¯çä»·çï¼å 为åè æ¯åè ç n åï¼èç©éµ A å nA æç¸åçç¹å¾åéã
å¾å°æå½±ç©éµä¹åå¯ä»¥è¿è¡åééç»´ï¼å°å ¶æå½±å°ä½ç»´ç©ºé´ãåéæå½±çæµç¨å¦ä¸ã
ï¼1ï¼å°æ ·æ¬åæåå¼åéã
ï¼2ï¼å·¦ä¹æå½±ç©éµï¼å¾å°éç»´åçåéã
åééæææ ¹æ®æå½±åçåééæåå§åéï¼ä¸åéæå½±çä½ç¨åè¿ç¨ç¸åãåééæçæµç¨å¦ä¸ã
ï¼1ï¼è¾å ¥åéå·¦ä¹æå½±ç©éµç转置ç©éµã
ï¼2ï¼å ä¸åå¼åéï¼å¾å°éæåçç»æã
ä»ä¸é¢çæ¨å¯¼è¿ç¨å¯ä»¥çå°ï¼å¨è®¡ç®è¿ç¨ä¸æ²¡æ使ç¨æ ·æ¬æ ç¾å¼ï¼å æ¤ï¼ä¸»æååææ¯ä¸ç§æ çç£å¦ä¹ ç®æ³ãé¤äºæ åç®æ³ä¹å¤å®è¿æå¤ä¸ªåç§ï¼å¦ç¨ç主æååæãæ ¸ä¸»æååæãæ¦ç主åéåæçã
æºç 讲解è§é¢é¾æ¥
FreeBSD下修改安装源的方法
说明:FreeBSD中安装软件一般有两种方式:
(一)、使用pk_add -r Package 来安装软件,Package安装的是已经编译好的二进制软件包,Package默认下载软件包的路径是在/var/db/pkg中
(二)、使用Ports方式编译安装,Ports是下载源码到本地,再执行编译安装,ports软件包的路径是在/usr/ports中
以上两种安装方式都需要从网络下载软件包,默认是从官方的源下载软件包的,速度比较慢,可以修改配置文件指定国内的镜像源来快速安装软件
1、修改Pcakage源为的镜像源
setenv PACKAGESITE .freebsd.org #安装ports
ee /etc/portsnap.conf #编辑文件
SERVERNAME=portsnap.cn.FreeBSD.org #更改服务器为国内镜像
按esc 回车,再按a保存
portsnap fetch extract #下载ports快照
portsnap update #更新
ee /etc/make.conf #编辑文件,添加下面代码
MASTER_SITE_BACKUP?=/FreeBSD/distfiles/${ DIST_SUBDIR}/
MASTER_SITE_OVERRIDE?=${ MASTER_SITE_BACKUP}
cd /usr/ports
make search name=nginx #查找ports中是否有nginx这个软件
cd /usr/ports/www/nginx #进入软件包目录
make install clean #安装
make deinstall clean #卸载
make deinstall reinstall clean #升级来源 系统运维 osyunwei.com
综合评价与决策——主成分分析(PCA)法(附Python源码)
本文探讨了综合评价与决策过程中的主成分分析(PCA)法,其核心在于量化评价对象的相对优劣。具体做法如下:
首先,考虑有n个评价对象,每个对象被分配到m个评价属性上,形成决策矩阵。矩阵中的每个行向量代表一个评价对象。
主成分分析(PCA)的核心思想是通过线性组合,最大化各分量的方差之和。其具体步骤包括数据预处理、计算相关系数矩阵的特征值与特征向量,以及计算评分模型。
在数据预处理阶段,将所有属性标准化,形成标准决策阵。
接着,计算相关系数矩阵的特征值与特征向量,特征向量构成旋转坐标系,使各分量方差之和最大化。
通过计算主成分贡献率与累积贡献率,确定前k个主成分,其中k通常设为使累积贡献率达到0.9的值。这k个主成分的线性组合得到最终评分模型。
应用实例中,以我国-年宏观投资效益数据为例,通过PCA法,得到评分向量,从而对这些年的投资效益进行排序。
附Python源码,用于实现上述PCA过程的完整步骤。
参考文献提供了理论基础,包括数学建模算法与应用、机器学习等领域的相关内容。
C#中如何编写PCA算法代码?
PCA的处理步骤:1,均值化
2,求协方差矩阵(我知道的有两种方法,这是第一种,按部就班的求,第二种是:(A*A‘/(N-1)))
3,求协方差的特征值和特征向量
4,将特征值按照从大到小的顺序排序,选择其中最大的k个,然后将其对应的k个特征向量分别作为列向量组成特征向量矩阵
5,将样本点投影到选取的特征向量上
matlab实现源代码
%PCA算法,matlab实现function F=pcad(A,n)%A是M*N
%测试实例A=[2.5,0.5,2.2,1.9,3.1,2.3,2,1,1.5,1.1;2.4,0.7,2.9,2.2,3.0,2.7,1.6,1.1,1.6,0.9]
%结果F=[0.,-1.,0.,0.,1.,0.,-0.,-1.,-0.,-1.]
%PCA第一步:均值化
X=A-repmat(mean(A,2),1,size(A,2))%去均值
%PCA第二步:求特征协方差矩阵
B=COV(X')%求协方差
%PCA第三步:求特征协方差矩阵的特征值和特征向量
[v,d]=eig(B)%求特征值和特征向量
%PCA第四步:将特征值按照从大到小的顺序排序
d1=diag(d);%取出对角矩阵,也就是把特征值提出来组成一个新的M*1的d1矩阵
[d2 index]=sort(d1); %特征值以升序排序 d2是排序后的结果 index是数排序以前的排名位置
cols=size(v,2);% 特征向量矩阵的列数
for i=1:cols %对特征向量做相反位置的调整 是个降序排列。这个过程把特征值和特征向量同时做相应的降序排列
vsort(:,i) = v(:,index(cols-i+1) ); % vsort 是一个M*col(注:col一般等于M)阶矩阵,保存的是按降序排列的特征向量,每一列构成一个特征向量
%vsort保存的是协方差矩阵降序后的特征向量,为M*M阶
dsort(i) = d1(index(cols-i+1)); % dsort 保存的是按降序排列的特征值,是一维行向量,1*M
end %完成降序排列
M=vsort(:,1:n)%提取主成分量
%PCA第五步:将样本点投影到选取的特征向量上
F=(X'*M)'%最终的投影
PCA降维(python)
PCA(主成分分析),作为常见的数据分析工具,通过线性变换实现高维数据的有效降维。其核心原理是将冗余的高维数据转化为一组不相关的低维表示,保留数据的主要特征信息。以iris数据集为例,PCA可将个相关变量压缩成5个主要成分,显著简化数据结构,提高分析效率。 进行PCA降维通常包括以下步骤:首先,确保数据预处理无缺失值,因为PCA基于变量间的相关性;其次,根据研究目标选择PCA(降维)或EFA(探索潜在结构);接着,确定主成分或因子数量;然后,进行主成分或因子选择并可能进行旋转以增强解释性;最后,解释降维结果并计算主成分得分。 在实践中,未调用特定包时,我们可以直观地观察特征值,如选取前两个主成分就能达到%的累积贡献率。比较降维前后数据的可视化效果,降维后的数据分布更清晰。至于包调用,如使用sklearn库,提供了更便捷的接口实现PCA降维,如通过PCA类进行操作。 深入了解PCA的数学原理和Python实现,可以参考以下资源:郑申海:PCA的数学原理
PCA(主成分分析)的python源码实现
Python实现PCA降维教程
机器学习中的PCA主成分分析指南
Python与数据分析:炼数成金-Dataguru专业数据分析社区中的PCA详解
这些资源将帮助你深入理解PCA并应用于实际的数据处理工作中。
2024-11-20 23:28232人浏览
2024-11-20 23:06791人浏览
2024-11-20 22:501325人浏览
2024-11-20 22:462249人浏览
2024-11-20 22:141270人浏览
2024-11-20 22:012661人浏览
1.java如何使用webmagic技术爬取网页信息?2.Python网络爬虫-APP端爬虫3.Java爬虫哪个好4.33 款可用来抓数据的开源爬虫软件工具5.教你写爬虫用Java爬虫爬取百度搜索结果
1.在哪里可以找到网页里的视频代码?2.快速搭建去中心化视频分享平台peertube3.成品短视频源码入口在哪4.请问怎么获取网站上视频的代码源?5.1推荐个最好的视频网站源码。2有没有视频网站翻译过
1.源码输出和解码输出有什么区别2.完美解码设置源码输出完美解码设置源码输出和解码输出有什么区别 区别: 1、源码输出,是指播放器播放的音频以数字形式输出给功放或者解码器进行音频的解码,然后输